Robust Speaker Recognition Using Speech Enhancement And Attention Model

Yanpei Shi*, Qiang Huang*, Thomas Hain

Speech and Hearing Research Group
Department of Computer Science, University of Sheffield
{YShi30, qiang.huang, t.hain}@sheffield.ac.uk

Abstract

In this paper, a novel architecture for speaker recognition is proposed by cascading speech enhancement and speaker processing. It aims to improve speaker recognition performance when speech signals are corrupted by noise. Instead of separately processing speech enhancement and speaker recognition, the two modules are integrated into one framework by a joint optimisation using deep neural networks. Furthermore, to increase the robustness against noise, a multi-stage attention mechanism is employed to highlight the speaker related features learned from context information in both time and frequency domains. To evaluate speaker identification and verification performance of the proposed approach, VoxCeleb1, one of mostly used benchmark datasets, is used. Moreover, the robustness evaluation is also conducted on VoxCeleb1 when its being corrupted by three types of interferences, general noise, music, and babble, at different signal-to-noise ratio (SNR) levels. The obtained results show that the proposed approach using speech enhancement and multi-stage attention models outperforms two strong baselines in different acoustic conditions in our experiments.

1. Introduction

The aim of speaker recognition is to recognize speaker identities from their voice characteristics [1]. In recent years, the use of deep learning technologies has significantly improved speaker recognition performance. Variani, et al. [2] developed the d-vector using multiple fully-connected neural network layers, and Snyder, et al. [3] developed X-vectors based on the Time-delayed neural networks (TDNN). However, it is still a challenging task when recognizing or verifying speakers in poor acoustic conditions.

To tackle speech signals corrupted by noise, in this field, some of previous studies [4, 5] tended to recover original signals by removing noise. Some methods [6, 7] focused on feature extraction from un-corrupted voices, and some methods [8, 9] tried to estimated speech quality by computing signal-to-noise ratio (SNR). Although speech enhancement has been used for speaker recognition, in most of previous studies it was often processed individually. This might cause the learned features or enhanced speech signals unable to well meet the requirement by speaker recognition and verification. Accordingly, it is highly desirable that both speech enhancement and speaker processing model can be optimised jointly. In [10], Shon et.al tried to integrated speech enhancement module and speaker processing module into one framework. In this method, the speech enhancement module worked to filter out unnecessary features corrupted by noise by generating a ratio mask and multiplying element-wise with the original spectrogram for speaker verification. However, in this work, the speaker verification module was per-trained and frozen when training the speech enhancement network. This means that the two modules were not optimised jointly.

In addition to joint optimisation, attention mechanisms have also been widely used for speaker identification and verification [11, 12, 13, 14]. This is because a neural attention mechanism can allocate different weights to different input features. This can hence highlight the relevant information and reduce the interference caused by irrelevant information. In previous studies [15, 11], the use of attention models has provided benefits not only for speech processing, but also for natural language processing (NLP) and image processing.

Wang, et al. [15] used an attentive X-vector where a self-attention layer was added before a statistics pooling layer to weight each frame. Rahman, et al. [11] jointly used attention model and K-max pooling to selects the most relevant features. In [16], Moritz, et al. combined CTC (connectionist temporal classification) and attention model to improve the performance of end to end speech recognition. In [17, 18] and [19], different attention models were also designed for speech emotion recognition and phoneme recognition, respectively. In [20], an attention model was used to allow the each time step of decoder to focus on different part of input sentence to search for most relevant words. Luong, et al. [21] used global attention and local attention, where global attention attends to the whole input sentence and local attention only looks at a part of the input sentence. Cheng et.al [22] proposed self attention that relating different positions of the same sentence. Woo, et al. [23] used combination of spatial attention and channel attention call CBAM to extract salient features from different dimension of input.

To improve the performance for speaker identification and verification, and increase the robustness against noise, in our proposed approach, the networks of speech enhancement and speaker recognition will be cascaded and their parameter will be optimised jointly by a single loss function. Simultaneously, a multi-stage attention mechanism will be also employed in order to learn useful features from context information in time, frequency and channel dimensions of the corresponding features. The use of multi-stage attention aims to highlight the relevant features to improve the robustness for speaker identification and verification in noise environment. The details of the proposed approach will be depicted in the following sections.

The rest of the paper is organized as follow: Section 2 presents the cascade structure of our approach and how the attention mechanism is used in these architecture. The used data set and experiment set-up are introduced in Section 3. The obtained results and related analysis are given in Section 4, and finally conclusions are drawn in Section 5.

*The first and second author contribute equally to this paper.
2. Model Architecture

2.1. Speech Enhancement Module

Figure 1 shows the proposed model architecture consisting of a speech enhancement module and a speaker recognition module. The input spectrograms, $X \in \mathbb{R}^{T \times F \times C}$, represent the input spectrograms, where T, F, and C represent the temporal dimension, frequency dimension, and channel dimension, respectively. For the input spectrogram, C is set to one, but its value is then changed to the number of kernels of a convolutional layer in the proposed architecture.

The speech enhancement module consists of multiple Conv-MS blocks, each of them containing a dilated convolution layer followed by a multi-stage attention block. In the attention block, self-attention is conducted in time, frequency, and channel domains, respectively.

The output of the dilated convolutional layer is denoted as $H_{k} \in \mathbb{R}^{T_{k} \times F_{k} \times C_{k}}$, where k means the kth CONV-MS block. The output H'_{k} denotes the refined features of the kth Conv-MS block, whose dimension is the same as H_{k}.

The output of the enhancement module is viewed as a ratio mask matrix to weight the input spectrogram by multiplying it by the corresponding frequency bins and time frames.

2.2. Speaker Recognition Module

The speaker recognition module consists of multiple residual convolutional blocks and a multi-stage attention block. The input of the kth residual block is denoted as $H_{k} \in \mathbb{R}^{T_{k} \times F_{k} \times C_{k}}$, and the final refined feature map of the kth residual block is $H'^{''}_{k}$. Within each residual block, multi-stage is operated sequentially. The last residual block is followed by fully-connected layers, by which the predictions of speaker identities are finally computed using.

2.3. Multi-Stage Attention (MS)

Figure 2 shows the structure of a multi-stage attention block, which runs channel attention, frequency attention, and time attention sequentially. Its mathematics representation can be found in equation 1:

$$H_{k}' = \alpha_{C,k} \odot H_{k}$$
$$H_{k}'' = \alpha_{F,k} \odot H_{k}'$$
$$H_{k}^{'''} = \alpha_{T,k} \odot H_{k}''$$

where $\alpha_{C,k}$, $\alpha_{F,k}$, and $\alpha_{T,k}$ represent the implementation of channel attention, frequency attention and time attention in the kth attention block, respectively.

2.3.1. Channel Attention

Following the principle of channel attention used in [24, 23], the working flow of channel attention is shown in Figure 2 (a) and Equation 2.

$$H_{k,\text{max}}^{C} = \max_{T \times F \times 1}(H_{k})$$
$$H_{k,\text{avg}}^{C} = \frac{1}{T \times F \times C_{k}} \sum_{T \times F \times C_{k}}(H_{k})$$
$$S_{\text{max}} = \text{Relu}((H_{k,\text{max}}^{C})W_{0} + b_{0})W_{1}$$
$$S_{\text{avg}} = \text{Relu}((H_{k,\text{avg}}^{C})W_{0} + b_{0})W_{1}$$
$$\alpha_{C,k} = \text{Sigmoid}(S_{\text{avg}} + S_{\text{max}})$$

where $W_{0} \in \mathbb{R}^{C_{k} \times 100}$, $b_{0} \in \mathbb{R}^{1 \times 100}$, and $W_{1} \in \mathbb{R}^{100 \times C_{k}}$ are the parameters of the kth channel attention block. In the implementation of channel attention, max pooling and average pooling are firstly applied on both time and frequency axes.
Figure 2: The multi-stage (MS) attention consists of three blocks attention block (a): Channel Attention; (b): Frequency Attention; (c): Time Attention, which are run in a cascading order.

2.3.2. Frequency and Time Attention

The frequency and time attention block have similar working structure when processing their three dimensional input except that an attention mechanism is applied to frequency dimension or time dimension.

\[
\begin{align*}
H_{k,max}^C &= \max_{1 \times 1 \times C_k} (H_k) \\
H_{k,avg}^C &= \text{avg}_{1 \times 1 \times C_k} (H_k) \\
H_{k,max}^T &= \max_{T_k \times 1 \times 1} (H_{k,\text{pool}}) \\
H_{k,avg}^T &= \text{avg}_{T_k \times 1 \times 1} (H_{k,\text{pool}}) \\
H_{k,\text{pool}} &= \text{Concat}[H_{k,avg}^T, H_{k,max}^T] \\
\alpha_k^F &= \text{Sigmoid}(f^2 \times 7 (H_{k,\text{pool}})) \\
\end{align*}
\]

Equation (3) shows its implementation in math format. In the 4th time attention block, a max pooling and an average pooling are firstly applied to channel dimension of the input data \(H_k \), and the corresponding outputs are \(H_{k,max}^C \in \mathbb{R}^{T_k \times F_k \times 1} \) and \(H_{k,avg}^C \in \mathbb{R}^{T_k \times F_k \times 1} \), respectively. \(H_{k,\text{pool}} \in \mathbb{R}^{T_k \times F_k \times 2} \) is obtained by concatenating the outputs after using poolings. On time dimension, the same max pooling and average pooling steps are applied on \(H_{k,\text{pool}} \) and \(H_{k,\text{pool}}^C \), the corresponding outputs are \(H_{k,\text{avg}}^T \in \mathbb{R}^{T_k \times F_k \times 2} \) and \(H_{k,\text{max}}^T \in \mathbb{R}^{T_k \times F_k \times 2} \). Again, the output after concatenating them on time dimension is \(H_{k,\text{pool}} \in \mathbb{R}^{T_k \times F_k \times 2} \). The frequency attention map \(\alpha_k^F \) is computed using a convolution operation with a 2-by-7-by-2 kernel followed by a sigmoid activation. The stride value is 1 on frequency dimension during convolution. The size of \(\alpha_k^F \) is then expanded to the same as \(H_k^T \) by data broadcast. The frequency refined feature map \(H_k^r \) is finally obtained by the product of \(\alpha_k^F \) and \(H_k \).

The computation of time attention is similar to frequency attention. Equation 3 and Figure 2 (c) shows the computation flow. The final feature representation is obtained by the multiplication of the previous frequency refined feature map and the time attention weights \(\alpha_k^T \).

\[
\begin{align*}
H_{k,max}^F &= \max_{1 \times 1 \times C_k} (H_k^r) \\
H_{k,avg}^F &= \text{avg}_{1 \times 1 \times C_k} (H_k^r) \\
H_{k,max}^T &= \max_{T_k \times 1 \times 1} (H_{k,\text{pool}}) \\
H_{k,avg}^T &= \text{avg}_{T_k \times 1 \times 1} (H_{k,\text{pool}}) \\
H_{k,\text{pool}} &= \text{Concat}[H_{k,avg}^T, H_{k,max}^T] \\
\alpha_k^T &= \text{Sigmoid}(f^7 \times 2 (H_{k,\text{pool}})) \\
\end{align*}
\]

3. Experiments

3.1. Data

In this work, Voxceleb1 [25] dataset is used to evaluate the proposed approach. Voxceleb1 data are extracted from Youtube.
videos, which contains 1251 speakers with more than 150 thousand utterances collected "in the wild". The average length of the audios in the dataset is 7.8 seconds.

The spectrogram of each recording is used as input features. Each recording is segmented frames using a 25-ms sliding window with a 10-ms hop, and then a 512-point FFT is implemented on audio segments. In our experiments, a 3-second audio segment are randomly extracted from each recording without any normalization.

To evaluate the robustness of the proposed approach, extra noise from MUSAN dataset is used. MUSAN dataset contains three categories of noises: general noise, music and babble [26]. The general noise type contains 6 hours of audio, including DTMF tones, dialtones, fax machine noises et al. The music type contains 42 hours of music recording from different categories. The babble type contains 60 hours of speech, including read speech from public domain, hearings, committees and debates et al.

3.2. Speaker Identification

In VoxCeleb1 dataset, both training and test sets contain the same number of speakers (1251 speakers) [25]. The training set contains 145265 utterances and the test set contains 8251 utterances. In order to reduce possible bias, the MUSAN dataset is also split into two parts for training and test. This is to ensure that the noise signals used for training will not be reused for test. Each training utterance is mixed with a type of noise at one of five SNR levels. For the test set, the same data configuration is set. To evaluate the recognition performance, Top-1 and Top-5 accuracy are employed [27].

3.3. Speaker Verification

There contains 148,642 utterances (1211 speakers) in the VoxCeleb1 development dataset, and 4,874 utterances (40 speakers) in the test dataset [25]. For the speaker verification task, there are total 37,720 test pairs. The same configuration on the data for speaker recognition task is also set for speaker verification. To compare with the baseline introduced in [10], the same loss function and similarity measurement (Cosine) are used. Equal Error Rate (EER) [28] and Detection Cost Function (DCF) [29] are used as evaluation metrics. DCF is computed as the average of two minimum DCF score (DCF0.01 and DCF0.001) [29, 30].

3.4. Experiment Setup

To evaluate our proposed approach, five models including two baselines and three proposed approaches are to be tested on the data mentioned in Section 3.2 and 3.3. As listed in table 3, SID represents the baseline using the SID-Net, and VoiceID loss [10] represents the baseline done by cascading speech enhancement and speaker recognition. SE+SID represents the cascading structure with a joint optimisation used in SE-Net and SID-Net. SE-MS+SID and SE+SID-MS are the two proposed approaches using multi-stage attention models in either the speech enhancement module (SE-Net) or the speaker recognition module (SID-Net) besides the joint optimisation used in SE+SID.

3.5. Network Structure

Table 1 and Table 2 shows the detailed structure of the speech enhancement and speaker recognition module, respectively. In the speech enhancement module, 11 dilated convolutional layers are employed. The speaker recognition module uses the ResNet-20 architecture[31], due to its effectiveness in speaker recognition [27].

For SE-MS+SID, each dilated convolutional layer in the
speech enhancement module is followed by a multi-stage attention module (MS). For SE+SID-MS, the multi-stage attention module (MS) is inserted into each residual block. Each of these two modules are trained independently, and are then fine-tuned by a joint optimisation. During training, Adam optimizer [32] is used with the initial learning rate being set to 1e-3 and the decay rate being set to 0.9 for each epoch.

4. Results

Table 4 shows speaker identification results obtained using the models listed in Table 3. Compared to the SID baseline, the use of SE+SID yields better performances for speaker identification. After using multi-stage attention models, SE+SID-MS and SE-MS+SID, about 2~3% further improvements on Top-1 accuracy are obtained in comparison with the baseline in all noise conditions. Compared to SE+SID, the use of attention module can also show about 1~2% relative improvement even if the SNR is at 0dB level. This case is probably because the use of attention mechanism can highlight the speaker related information and reduce the interference caused by irrelevant noise signals.

For the task of speaker verification, table 5 shows similar tendencies when implementing all five models on the test data. It is clear that SE+SID the use of a joint optimisation can performs better than VoiceID loss [10] using only a pre-trained speaker identification model instead of a joint optimisation. In comparison with speaker identification task, the verification improvements obtained using SE+SID-MS and SE-MS+SID are relatively smaller. This is probably because for speaker verification, the similarity between speaker embeddings learned from speaker model is computed using Cosine function instead of directly being computed using the trained speaker recognition model. In addition, for speaker verification, the use of attention model in speech enhancement module can yield slight better performances in almost all conditions except when speeches are corrupted by Babble noise at 0dB and 5dB SNR levels. For this case, a possible reason is that the “Babble” noise signals are relative complication due to its speaker/speech like characteristics. The use of attention model in speaker recognition module (SID-Net) might be more suitable to extract speaker relevant information than using an attention model in the speech enhancement model when acoustic environment is poor.

5. Conclusion and Future Work

In this paper, a joint optimisation by cascading the speech enhancement network and speaker recognition network was implemented in order to improve speaker identification and verification performance when speech signals are corrupted by noise. Furthermore, a multi-stage attention model also employed in either the speech enhancement or speaker recognition module to highlight speaker relevant information. It is clear that the use of speech enhancement can yield better performances than the only use of speaker identification model. Moreover, a joint optimisation and the use of attention model can further increase the robustness of our system against the interferences caused by different types of noise.

In the future work, the scenario that use multi-stage attention (MS) module in both SE-Net and SID-Net will be tested. More advanced speech enhancement techniques and training strategy such as adversarial training will be studied on other large datasets, such as Vozceleb2. Post-processing techniques for speaker embeddings such as PLDA back-end will also be taken into account.

Acknowledgement

This work was in part supported by Innovate UK Grant number 104264 MAUDIE.
<table>
<thead>
<tr>
<th>Noise Type</th>
<th>SNR</th>
<th>SID</th>
<th>SE+SID</th>
<th>SE-MS +SID</th>
<th>SE+SID-MS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Top1 (%)</td>
<td>Top5 (%)</td>
<td>Top1 (%)</td>
<td>Top5 (%)</td>
</tr>
<tr>
<td>Noise</td>
<td>0</td>
<td>74.1</td>
<td>86.9</td>
<td>76.3</td>
<td>88.9</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>79.2</td>
<td>90.0</td>
<td>81.1</td>
<td>91.8</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>83.2</td>
<td>93.2</td>
<td>86.0</td>
<td>94.7</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>84.9</td>
<td>94.6</td>
<td>87.3</td>
<td>95.8</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>87.9</td>
<td>95.4</td>
<td>89.1</td>
<td>96.6</td>
</tr>
<tr>
<td>Music</td>
<td>0</td>
<td>65.8</td>
<td>82.0</td>
<td>67.7</td>
<td>83.7</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>76.9</td>
<td>89.1</td>
<td>80.0</td>
<td>91.0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>83.8</td>
<td>93.5</td>
<td>85.2</td>
<td>94.7</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>86.1</td>
<td>93.9</td>
<td>88.4</td>
<td>95.6</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>87.4</td>
<td>94.7</td>
<td>89.1</td>
<td>96.0</td>
</tr>
<tr>
<td>Babble</td>
<td>0</td>
<td>62.4</td>
<td>80.2</td>
<td>65.7</td>
<td>81.5</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>76.2</td>
<td>87.3</td>
<td>78.6</td>
<td>88.9</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>81.4</td>
<td>92.2</td>
<td>84.6</td>
<td>93.6</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>84.0</td>
<td>92.6</td>
<td>86.8</td>
<td>93.9</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>85.8</td>
<td>92.9</td>
<td>87.1</td>
<td>94.6</td>
</tr>
<tr>
<td>Original</td>
<td></td>
<td>88.5</td>
<td>95.9</td>
<td>89.8</td>
<td>96.5</td>
</tr>
</tbody>
</table>

Table 4: Speaker Identification Results on the Voxceleb1 test data when being corrupted by three types of noise (Noise, Music and Babble) at different SNR (0-20 dB) levels. Four different scenarios are tested: SID-Net (SID), the use of both SE-Net and SID-Net without employing a multi-stage attention (SE+SID), a joint system combing SE-Net with SID-Net, but a multi-stage attention is used only in SE-Net(SE-MS+SID); The SE-Net and SID-Net denotes a joint system, with a multi-stage attention layer being used only in SID-Net(SE+SID-MS).

<table>
<thead>
<tr>
<th>Noise Type</th>
<th>SNR</th>
<th>SID</th>
<th>SE+SID</th>
<th>SE-MS+SID</th>
<th>SE+SID-MS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>EER (%)</td>
<td>DCF</td>
<td>EER (%)</td>
<td>DCF</td>
</tr>
<tr>
<td>Noise</td>
<td>0</td>
<td>16.94</td>
<td>0.933</td>
<td>16.56</td>
<td>0.938</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>12.48</td>
<td>0.855</td>
<td>12.26</td>
<td>0.830</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10.03</td>
<td>0.760</td>
<td>9.86</td>
<td>0.747</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>8.84</td>
<td>0.648</td>
<td>8.69</td>
<td>0.686</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>7.96</td>
<td>0.594</td>
<td>7.83</td>
<td>0.639</td>
</tr>
<tr>
<td>Music</td>
<td>0</td>
<td>17.04</td>
<td>0.940</td>
<td>16.24</td>
<td>0.913</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>11.54</td>
<td>0.828</td>
<td>11.44</td>
<td>0.818</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>9.69</td>
<td>0.749</td>
<td>9.13</td>
<td>0.733</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>8.40</td>
<td>0.689</td>
<td>8.10</td>
<td>0.677</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>7.70</td>
<td>0.665</td>
<td>7.48</td>
<td>0.635</td>
</tr>
<tr>
<td>Babble</td>
<td>0</td>
<td>38.90</td>
<td>1.000</td>
<td>37.96</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>28.04</td>
<td>0.998</td>
<td>27.12</td>
<td>0.996</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>17.34</td>
<td>0.917</td>
<td>16.66</td>
<td>0.926</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>11.31</td>
<td>0.795</td>
<td>11.25</td>
<td>0.807</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>9.12</td>
<td>0.720</td>
<td>8.99</td>
<td>0.705</td>
</tr>
<tr>
<td>Original</td>
<td></td>
<td>6.92</td>
<td>0.565</td>
<td>6.79</td>
<td>0.574</td>
</tr>
</tbody>
</table>

Table 5: Speaker Verification Results on Voxceleb1 test data when it being corrupted by different types of noise (Noise, Music and Babble) at different SNR (0-20 dB). Four different scenarios are tested: only use SID-Net (SID); A joint system combining the SE-Net with the SID-Net without a multi-stage attention (SE+SID); A joint system using both SE-Net and SID-Net, but without being used in multi-stage attention (SE-MS+SID); A joint system consisting of SE-Net and SID-Net, with a multi-stage attention being used in SID-Net (SE+SID-MS). The results of VoiceID Loss [10] is listed and works as a baseline.
6. References

