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Abstract

The social media revolution has produced a plethora of web
services to which users can easily upload and share multime-
dia documents. Despite the popularity and convenience of such
services, the sharing of such inherently personal data, includ-
ing speech data, raises obvious security and privacy concerns.
In particular, a user’s speech data may be acquired and used
with speech synthesis systems to produce high-quality speech
utterances which reflect the same user’s speaker identity. These
utterances may then be used to attack speaker verification sys-
tems. One solution to mitigate these concerns involves the
concealing of speaker identities before the sharing of speech
data. For this purpose, we present a new approach to speaker
anonymization. The idea is to extract linguistic and speaker
identity features from an utterance and then to use these with
neural acoustic and waveform models to synthesize anonymized
speech. The original speaker identity, in the form of timbre,
is suppressed and replaced with that of an anonymous pseudo
identity. The approach exploits state-of-the-art x-vector speaker
representations. These are used to derive anonymized pseudo
speaker identities through the combination of multiple, random
speaker x-vectors. Experimental results show that the proposed
approach is effective in concealing speaker identities. It in-
creases the equal error rate of a speaker verification system
while maintaining high quality, anonymized speech.

Index Terms: Speaker anonymization, Waveform modeling,
Neural network, X-vector

1. Introduction

The development of the Internet has made it easy to share and
acquire speech data. It is also easy to build speech synthesis
systems from acquired data and then to use advanced speech
synthesis techniques [1] to generate new speech samples which
reflect the voice of a specific speaker. However, the abuse of
these technological advancements has created new risks. Spe-
cially, generated utterances could be used to attack an automatic
speaker verification (ASV) system [2, 3, 4]. It is also possible to
search for information about a person on the Internet by using
an ASV system [5]. How to suppress the identity information of
a speaker and mitigate the risks is becoming an urgent problem.

The hiding of speaker identity, also referred to as speaker
anonymization or de-identification, is a technology that modi-
fies the original speech signal to make it sound like an anony-
mous speaker’s speech while maintaining the linguistic contents
and speech quality. Speaker identity information typically in-
cludes timbre, pitch, speaking rate, and speaking style. Timbre,
which can be represented by the spectrum, carries most of the
speaker identity information and is widely used in ASV sys-
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tems. We thus focused on modifying the timbre and developed
a speaker anonymization method based on such modification.

The main idea of our proposed method is to separate
speaker identity and the linguistic contents from the input
speech and synthesize a new speech waveform after changing
the speaker identity. As an initial trial, we focused on hid-
ing speaker identity and maintaining speech quality by sacri-
ficing a small part of linguistic contents. Specifically, we used
a deep neural network (DNN)-based speaker-independent au-
tomatic speech recognition (ASR) system to capture linguistic
information in the form of a phoneme posteriorgram (PPG) [6]
and used a pre-trained x-vector [7] system to encode the speaker
identity. An anonymised pseudo speaker is composed by com-
bining the x-vectors corresponding to a set of different, arbi-
trary speakers. Given the PPG and anonymized x-vector, our
method uses neural acoustic and waveform models to generate
an anonymized speech waveform. Experimental results show
that speech anonymized using the proposed method is effective
in concealing speaker identity, with anonymized speech being
indistinguishable from the original speaker identity. Further-
more, anonymization protects speech quality, resulting in only
negligible degradation.’

The rest of this paper is organized as follows. Section 2
briefly summarizes related work. Section 3 gives the details of
the proposed speaker anonymization method. Sections 4 and 5
describe the experimental setup and present the results. Finally,
Section 6 summarizes the key points and mentions future work.

2. Related work

First of all, speaker anonymization differs from speech
anonymization [8, 9] in that the former suppresses speaker
identity while the latter obscures linguistic content. In accor-
dance with the manipulation objectives, speaker anonymization
can be split into physical and logical anonymization. Physi-
cal anonymization aims to perturb speech in physical space by
adding an external sound to the original waveform [10] while
logical anonymization modifies speaker identity on the recorded
speech signal. Our proposed method falls into the latter cate-
gory.

For logical anonymization, Jin et al. [11] presented a voice
transformation (VT) system to change the speaker identity into
another special speaker. Similarly, Bahmaninezhad et al. [12]
utilized a convolutional neural network (CNN) as a VT func-
tion and averaged different transformation results as a means
to anonymize speech. Magarienos et al. [13] and Pobar and
Ipsi¢ [14] improved the convenience of the VT-based method to
enable the user to select an approximate transformation from a

'A demonstration of audio samples is available at https:/nii-
yamagishilab.github.io/SpeakerAnonymization/

10.21437/SSW.2019-28


http://www.isca-speech.org/archive/SSW_2019/abstracts/SSW10_P_2-4.html

L‘ _ FO

B

re FO
AN extractor| ¥
PPG ic| Mel- | Neural
—»| ASR /-\r%%lasetic waveformp
spect.| model

X-vector -
extractor}4’| Anonymize %
Anonymized
Pool of x-vectors

Xx-vector
Figure 1: The proposed speaker anonymization system. PPG
and Mel-spec.  denote phoneme posteriorgram and Mel-
spectrogram, respectively.

pool of pre-trained VT models for speaker anonymization. Our
method differs from these methods because we train only one
transformation function and generate an anonymised pseudo
speaker identity through the combination of multiple, external
speaker identities.

Justin et al. [15] performed speaker anonymization by first
recognizing the diphones in the input speech using an ASR sys-
tem and then synthesizing speech from the recognized diphone
sequence. The synthesized speech differs from the original one
in terms of speaker identity because the synthesizer is speaker-
dependent and was trained using the data of a different speaker.
This method is similar to our proposed method, but we use a
speaker-independent speech synthesizer trained on the data for
many speakers. Our framework is therefore more flexible.

With a goal closely related to that of anonymization, Alegre
et al. [16] investigated so-called speaker evasion and obfusca-
tion using voice conversion techniques. With the work aiming
only to circumvent surveillance systems, it evaluated only how
the approach could degrade ASV performance. It did not con-
sider degradations to speech quality. In contrast, the ideas pre-
sented in this paper are evaluated in terms of speaker identity
anonymization, speech quality and linguistic content.

3. Proposed speaker anonymization method

We assume that the information in a speech waveform can be
disentangled and encoded using two groups of features. One
group mainly encodes the speech content, e.g., the sequence of
spoken words. The other group captures the acoustic features
invariant to the speech content, e.g., the speaker identity. We
further assume that we can anonymize a speech waveform by
altering the features that encode the speaker identity only.
Given these assumptions, we devised the speaker
anonymization system illustrated in Figure 1. This system first
extracts an x-vector, a PPG, and the fundamental frequency (FO)
from the input waveform. It then anonymizes the x-vector on
the basis of information gleaned from the x-vectors of exter-
nal speakers. Finally, it uses an acoustic model and a neural
waveform model to synthesize the speech waveform from the
anonymized x-vector and the original PPG and FO.

3.1. Feature extraction

X-vector representations are used as features to encode speaker
identity because they have been shown to be effective in speaker
verification and recognition systems [7]. The x-vector extrac-
tor is a DNN consisting of seven fully connected layers, a stats
pooling layer, and a softmax output layer, as listed in Table 1.
This DNN takes 24-dimensional filter banks as input, and the
first three layers splice several frames of the previous layer’s
output as its input. As a result, the third layer can extract one
feature vector that covers 15 input frames of the filter bank fea-
tures. To deal with the varied length of the input speech, a stats

156

Table 1: Network architecture of x-vector system. T denotes
speech length, t indicates t-th frame, {-} is a set of frame in-
dices, and N is the number of speakers in training data.

Layer Layer context Context | Input X output
1 [t—2,t+ 2] 5 120 x 512
2 {t—2,t,t+2} 9 1536 x 512
3 {t—3,t,t+3} 15 1536 x 512
4 {t} 15 512 x 512
5 {t} 15 512 x 1500
stats [0,7) T 15007" x 3000
6 {0} T 3000 x 512
7 {0} T 512 x 512
softmax {0} T 512 x N

pooling layer is used after the fifth layer to calculate the mean
and variance of the overall output of the fifth layer. The soft-
max layer predicts the probability that the input speech is from
each of the N speakers in the training data. Once the network is
trained on a database containing a large number of speakers, the
outputs of the higher layers can be used to represent the speaker
space, and the trained model can be used to extract the speaker
identity for a new input speech signal. We followed the stan-
dard approach for x-vector extraction, i.e., by using the affine
component of the sixth layer [7]. Finally, the utterance-level x-
vectors of a speaker are averaged as the speaker-level x-vector.

The PPG is used as a feature representation for encoding
the linguistic content. The PPG is a sequence of vectors that
contain the posterior probability of every phoneme class at the
corresponding time step (or speech frame). In other words, each
PPG vector is a soft label indicating the likelihood of each pos-
sible phoneme being uttered in the speech frame. For this work,
we use a DNN-based ASR system [17] to extract the PPG. The
network is a stack of six sigmoid layers and a softmax out-
put layer. Each input feature vector is the concatenation of 11
frames of 40-dimensional acoustic feature vectors. The hidden
layers have a layer size of 1024, while the layer size of the soft-
max layer is 1944, i.e., the number of tied tri-phone hidden
Markov model states. Because this ASR system is trained on
a database containing a large number of speakers, the learned
DNN can be treated as a speaker-independent model. We as-
sume that the extracted PPG or output of the top hidden layers
mainly encodes the speech content rather than the speaker iden-
tity. In addition to the softmax layer, we also consider the output
of the 6th sigmoid layer as a PPG.

The proposed system extracts FO from the input speech
waveform using an FO extractor ensemble [18]. Although the
FO may encode speaker identity information such as gender and
age, it also contains plenty of context-related information such
as the pitch accents and intonation that carry the semantic mes-
sage [19]. Therefore, in order to preserve the context informa-
tion, the proposed system does not modify FO. Furthermore,
ASV systems normally use short-time spectral features rather
than FO to verify speaker identity.

Note that the FO is extracted with a frame shift of 5 ms.
Because the ASR system produces a PPG vector every 10 ms,
the extracted PPG vector is replicated twice to match the FO
frame rate. The x-vector is copied to every frame.

3.2. Anonymization

Many methods can be used to generate a new speaker identity
on the basis of the x-vector. We devised two simple anonymiza-
tion methods for modifying the x-vector of the input speech
waveform. One is to use the mean x-vector of a set of randomly
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Figure 2: Schematic representations of speaker anonymization
based on two x-vector selection methods. Square markers indi-
cate target speaker to be anonymized, red cross markers indi-
cate selected x-vectors, and red star markers represent average
of selected x-vectors.

selected x-vectors from an x-vector pool, which produces a dif-
ferent anonymized psuedo speaker each time. The other is to
compose an x-vector for which the similarity score to the orig-
inal x-vector is s. The latter method enables the distance be-
tween the anonymized speaker and the original input speaker
to be flexibly controlled. The composed x-vector can be ap-
proximately calculated by averaging a set of candidate x-vectors
for which the similarity to the original speaker is in the range
[s — €,8 + €], where € > 0 is a hyper-parameter used to con-
trol the width of the range. We use cosine distance cos(x1 , X2)
to represent the similarity between two x-vectors x; and Xa.
These two anonymization methods are illustrated in Figure 2.

3.3. Waveform generation

The proposed system uses two modules to generate the speech
waveform: an acoustic model that generates a Mel-spectrogram
given the three input features (PPG, F0O, and anonymized x-
vector), and a neural source-filter (NSF) waveform model [20]
that produces a speech waveform given the FO, anonymized x-
vector, and generated Mel-spectrogram.

The acoustic model is an autoregressive (AR) one that gen-
erates one frame of a Mel-spectrogram given the data gener-
ated in the previous frames. Similar to the acoustic model in
our previous work [1], this AR acoustic model has two feed-
forward layers and a bi-directional long short-term memory
(LSTM) recurrent layer near the input side. It uses a unidirec-
tional LSTM layer that takes the output of the previous LSTM
layer and the Mel-spectrogram generated in the previous frame
as its input. Finally, a linear output layer is used to produce
the Mel-spectrogram of the current time step. During training,
the natural Mel-spectrogram is fed back into the unidirectional
LSTM layer (i.e., teacher forcing). The dimension of each Mel-
spectrogram vector is 80.

The NSF model mainly contains three modules, as shown
in Figure 3. The condition module processes the input features
and upsamples them to the waveform sampling rate. The source
module generates a sine-waveform excitation signal given the
upsampled FO, and the filter module converts the excitation
into a waveform using five dilated-convolution (dilated-CNN)
blocks. This model is trained by minimizing the short-time
spectral amplitude distances between the generated and natural
waveforms. We used our previous specifications [20] to config-
ure it. Specifically, each of the five dilated-CNN blocks contains
ten gilated-CNN layers, where the dilation size of the k-th layer
is 2871

While the x-vector extractor and ASR modules can be pre-
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Figure 3: System diagram of neural source-filter-based wave-
Sform model.

Table 2: Training recipes for modules in proposed system and
other systems for performance evaluation.

[ Module | Description ]
ASR trained on TIMIT database using Kaldi
ppg TIMIT recipe [17]
Proposed X-vector trainc?d on VoxCelf:b database using
system extractor Kaldi VoxCeleb recipe [7]
X-vector extracted from VoxCeleb database us-
pool ing x-vector extractor (7,325 speakers)
Acoustic trained on VCTK corpus using recipe
model&NSF| in Table 3
Evaluation ASRgya pre_—trained DeepSpeech model [221_
modules ASV ot trained on VoxCe}eb database using
VoxCeleb ASV recipe [23] and adapted
to VCTK corpus

trained using external sources, the acoustic model and the NSF
model must be trained using data from potential users of the
anonymization system.

4. Experimental setup
4.1. Evaluation methods

We evaluated the performance of the proposed system using
an ASV system (ASVeva) and an ASR system (ASReva). The
latter is different to the ASR system used for PPG extraction
(ASRppg). Suppose a speaker has been enrolled in the ASVeya
system. Ideally, the anonymized speech of the speaker will be
‘falsely’ rejected by the ASVeva system. By calculating how the
rejection rates rise over multiple speakers, we evaluated how
well the proposed system anonymized the speech waveforms.
We used the ASR.va system to recognize the word sequences
from the original and anonymized speech. It is assumed that the
smaller the difference between the word sequences, the better
the preservation of the linguistic contents.

We used the equal error rate (EER) to measure anonymiza-
tion performance and the word error rate (WER) to investigate
how well the content was preserved in the anonymized speech.
We used the mean opinion score (MOS) as the metric for the
quality of the anonymized speech. It was calculated using the
P.563 algorithm [21] and evaluated by human listeners.

4.2. Data recipes

As listed in Table 2, the proposed system contained mod-
ules trained using different data corpora. The ASRp, mod-
ule is a DNN-based phoneme recognizer system trained on the
TIMIT database [24]. The x-vector extractor was configured
and trained on the VoxCeleb dataset using the Kaldi VoxCeleb
training recipe [23]. With the x-vector extractor, the pool of
x-vectors for anonymization was extracted from the VoxCeleb
dataset, which resulted in 7,325 x-vectors. The acoustic model
and the NSF module were trained on the VCTK corpus using
the recipes in Table 3. The training and development data in-
cluded 13,600 utterances from 68 speakers, each of whom con-
tributed 200 utterances. The ratio of training and development



Table 3: Detailed usage of VCTK corpus in NSF and ASVea
modules. Spk denotes speaker ID, and utt. denotes utterance
ID, which is shared across speakers. Tar. and nontar. denote
target and non-target test data for ASV evaluation.

[ | Data set [ No. of speakers [ No. of utterances |
AM&NSF | train/dev 68 (spk.01 - 68) | 13600 (utt.026 -
225)
adaptation 20 (spk.69 - 89) | 2580 (utt.226 - )
ASV enrollment 11 (spk.0I -) 129 (utt.001 -)
eval test (tar.) 1T (spk.01 - ) 1528 (utt.226 - )
test (nontar.) | 19 (spk.49 -67) | 1985 (utt.226 -)

utterances was around 4 : 1, and the numbers of male and fe-
male speakers were 30 and 38, respectively.

The performance of the proposed system was evaluated on
a test data set (11 American speakers randomly selected from
the 68 speakers), and the remaining 19 speakers were non-target
speakers (10 female and 9 male). The number of utterances for
the target and non-target speakers are listed in Table 3.

As the evaluator, the x-vector-PLDA-based ASVeva [25]
module was trained on the VoxCeleb dataset and then adapted
to the VCTK domain using 2580 utterances from 20 unused
speakers in the VCTK corpus. These 20 speakers differed from
the target and non-target speakers. After training and adapta-
tion, each of the 11 target speakers enrolled in ASV.ya using
at most 19 enrollment utterances. There was no overlap among
the enrollment, adaptation, training, and test datasets, as shown
in Table 2. The EERs were calculated on the basis of a gender-
dependent verification system. Finally, the ASReva module was
DeepSpeech? [22] pre-trained on external data.

Note that, since the ASR;,; and DeepSpeech models were
trained on American English, if they had been used directly
for VCTK-based evaluation, the non-American speakers would
have had large WERs. Therefore, we used only Ameri-
can speakers in the VCTK corpus as target speakers to be
anonymized (especially for the “test (tar.)” dataset listed in Ta-
ble 3).

4.3. Subjective evaluation setup

We carried out a subjective evaluation test to investigate the
quality of the anonymized speech and the similarity between the
original natural speech and the anonymized speech. The range
selection method was used for the anonymization. We used four
levels of dissimilarity for each PPG condition (i.e., the 6th sig-
moid and softmax layers): 0.0, 0.2, 0.4, 0.6, where 0.0 means
copy synthesis. The evaluation was performed by 296 listeners
who each rated up to 380 utterances randomly selected from the
1,528 test utterances. A combined total of 26,978 data points
were obtained for the quality and similarity evaluations, which
is roughly equivalent to each utterance being evaluated twice,
respectively.

5. Experimental results
5.1. Anonymization using nearest speakers

Anonymized speech was obtained by averaging the nearest M
speakers’ x-vectors in the pool, where M = 100, 200, and 300.
Because the ‘dissimilar’ non-target speakers far from the target
speaker might be assigned low scores, resulting in low EERs,
we used the K nearest non-target speakers for EER calculation,
where K = 3, 6, and all (9 male and 10 female speakers).

Zhttps://github.com/mozilla/DeepSpeech
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Table 4: EERs (%) for anonymized speech and nearest K non-
target speakers. Anonymized speaker was composed using M
nearest speakers in x-vector pool. “—” means no anonymiza-
tion performed, “6th sigmoid” means 6th sigmoid hidden layer
of ASR e, and “softmax” is softmax output layer of ASR,p,.
Anonymization using M K

nearest speakers in pool 3 ] 6 [ al

| - [ 2.52 [ 2.04 [ 2.04 ]
PPG: 6th sigmoid

100 11.69 | 10.11 9.56

200 11.89 | 10.38 | 9.80

300 12.23 | 10.73 | 10.11
PPG: softmax

100 23.00 | 20.77 | 19.74

200 24.81 | 21.92 | 21.66

300 25.05 | 22.89 | 22.60

Table 5: EERs (%) for anonymized speakers (using M ran-
domly selected speakers from pool) and non-target speakers.

Anonymization with M

random speakers in pool 10 30 100 200
— 2.11
PPG: 6th sigmoid 32.17 | 22.66 | 23.20 | 23.89
PPG: softmax 34.28 | 30.35 | 29.65 | 29.46

As shown in Table 4, the EERs before anonymization
are low for all conditions (around 2.04% to 2.52%). After
anonymization, they are much higher. The highest rates are
achieved for a value of M = 300 when the softmax layer
output was used as the PPG. This indicates that the proposed
method can effectively suppress speaker identity. Comparing
the two PPG conditions, the softmax layer resulted in higher
EERs. This might be because the PPG from the ASR’s softmax
layer contains less speaker identity information while that from
the hidden layers contains more speaker-dependent features that
may have been used by the acoustic model.

5.2. Anonymization using random selection method

We randomly selected M speakers from the pool for
anonymization, where M = 10, 50, 100, and 200. To reduce
the bias caused by random selection, we repeated the experi-
ment five times for each M, and the average EER was used
as the final result. The EERs for the anonymized speakers and
the non-target speakers are shown in Table 5. Compared with
the original speaker, the anonymized speakers achieved much
higher EERs. This means that random selection is a simple and
effective method for anonymization. Note that EERs for the
original speakers in Table 4 (2.04%) and Table 5 (2.11%) were
different. This was because of different protocols used.

Table 6 shows the dissimilarity score ranges for the
anonymized speaker and the original speaker. The scores were
calculated from their x-vectors, and the range for each M was
calculated from the scores for the five repetitions. The dissim-
ilarity score is defined as 1 — cos(x1,x2). As shown by these
results, the random selection produced various anonymized

Table 6: Dissimilarity score range between original speaker
and anonymized speaker composed using M randomly selected
speakers.

M 10 50 100 200
. 6th . 0.17-0.53 | 0.20-0.43 | 0.19-0.44 | 0.21-0.41
sigmoid
softmax | 0.17-0.60 | 0.26-0.51 | 0.24-0.51 | 0.26-0.48




speakers for the original target speakers.

5.3. Anonymization with range selection method

Figure 4 shows the EERs, WERs, and MOS values ob-
tained by anonymization with different distances between the
anonymized speaker and the original input speaker. We use the
dissimilarity score to represent the distance. As the dissimilar-
ity score increases, the EER increases greatly while the MOS is
relatively stable. This indicates that the proposed method can
generate anonymized speakers while maintaining speech qual-
ity.

However, there was a large gap between the natural speech
and the anonymized speech in terms of the WER. The WER
of the natural speech is 9.49% while those of the anonymized
speech are between 10% and 30% when using the PPG from the
6th layer and between 25% and 45% when using the PPG from
the softmax layer.

One reason for the higher WERs may be that the ASRppg
cannot perfectly recognize the phoneme sequence from the in-
put speech signal and may extract inaccurate PPGs. Such inac-
curate PPGs could deliver incorrect linguistic contents and thus
affect the acoustic models both in training and generation. This
suggests that we need to train an ASR, using a larger amount
of data that include many accents or to use unsupervised rep-
resentation learning frameworks to obtain phone-equivalent in-
formation without using phone knowledge. This is the next step
in our work.

In addition, we can see that the WERs were higher when
the dissimilarity score was higher than 0.4. This indicates that
when x-vectors are averaged over very different unseen speak-
ers, our proposed system is unable to correctly recover the orig-
inal linguistic contents of the input speech. This means that,
while anonymization is largely successful, the speaker identity
and linguistic contents are not perfectly factorized in the cur-
rent framework. Accordingly, we need to devise a framework
that can better disentangle their representations.

5.4. Subjective test

As shown in Figure 5, the original natural speech had an aver-
age MOS of 4.05 whereas the copy synthesized and anonymized
speech scores were between 2.31 and 3.25. The scores slightly
decreased as the dissimilarity score increased. The reason
for the copy synthesized and anonymized speech scores being
worse than the natural speech score might be that linguistic er-
rors and the untangled speaker identity blurred the synthesized
speech.

Figure 6 breaks down the similarity between the original
speaker and the anonymized speaker by evaluator judgment.
As the dissimilarity score increased, the judgment as differ-
ent increased. This indicates that the proposed method can
anonymize speech sufficiently well to hide the speakers iden-
tity.

As we can see from Figures 5 and 6, higher quality was
achieved when the PPG was extracted from the 6th sigmoid
layer while more speaker-distinguishable speech was produced
when it was extracted from the softmax layer. These results are
similar to the objective results above.

6. Conclusion and future work

Our proposed speaker anonymization method is based on x-
vectors and neural acoustic and waveform models. The essen-
tial idea is to first extract speaker identity and linguistic infor-
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mation from the audio signal and then synthesize anonymized
speech from the linguistic information and an anonymised
pseudo speaker identity. The anonymised pseudo speaker is
composed by averaging multiple speakers’ x-vectors, and the
PPG is used as a representation of the linguistic information.
Experimental results showed that the use of anonymized speech
greatly increased the EER of an automatic speaker verification
system while the quality of the anonymized speech was only
slightly degraded. However, the anonymized speech had higher
WERs. This was probably caused by a phoneme recognition
error from the ASR system used for PPG extraction.

Since the proposed method heavily depends on the accuracy
of the ASR system for PPG extraction, we plan to develop an
unsupervised method to disentangle the linguistic contents and
speaker identity and thus avoid the error introduced by the ASR
system. We also plan to train the disentanglement model using
data containing multiple languages so our speaker anonymiza-
tion method can be language-independent. Since no common
databases, protocols, and metrics are available, it is difficult
to compare different solutions and we did not have a baseline
system in this paper. Therefore, we plan to provide a com-
mon database, protocol, and metric for development of speaker
anonymization.
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