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Abstract
Collaborative learning is a key skill for student success, but si-
multaneous monitoring of multiple small groups is untenable
for teachers. This study investigates whether automatic audio-
based monitoring of interactions can predict collaboration qual-
ity. Data consist of hand-labeled 30-second segments from au-
dio recordings of students as they collaborated on solving math
problems. Two types of features were explored: speech ac-
tivity features, which were computed at the group level; and
prosodic features (pitch, energy, durational, and voice quality
patterns), which were computed at the speaker level. For both
feature types, normalized and unnormalized versions were in-
vestigated; the latter facilitate real-time processing applications.
Results using boosting classifiers, evaluated by F-measure and
accuracy, reveal that (1) both speech activity and prosody fea-
tures predict quality far beyond chance using majority-class ap-
proach; (2) speech activity features are the better predictors
overall, but class performance using prosody shows potential
synergies; and (3) it may not be necessary to session-normalize
features by speaker. These novel results have impact for ed-
ucational settings, where the approach could support teachers
in the monitoring of group dynamics, diagnosis of issues, and
development of pedagogical intervention plans.
Index Terms: speech activity detection, prosodic features, ma-
chine learning, student collaboration, collaborative learning,
classroom education.

1. Introduction
Collaboration is an important skill for all students to learn and
practice. It is an integral part of the push for competencies in
21st-century skills that students must master as they progress
through school and into their careers [1]. Research has shown
that students do not come to class with pre-existing knowledge
on how to engage with their peers in collaborative activities and
how best to work together productively in groups [2].

Management and assessment of collaborative learning tasks
is difficult in typical classrooms when teachers need to monitor
10-15 groups with two to three students in each group [3]. Ide-
ally, teachers would listen to peer interactions in each group for
long enough to understand the progress of discourse, but very
few teachers can do this well for so many groups. This project
aims to build speech-based learning analytics for collaboration
that could help teachers by identifying group processes and en-
abling teachers to target their interventions.

Although there are many approaches (e.g., keystroke data,
written responses) for gathering diagnostic information about

collaborative learning, most collaborative learning involves
peer discourse. Automated analysis of peer discourse in col-
laborative learning has been successful [4, 5, 6], but almost all
prior work depends on capturing discourse in a modality other
than speech (e.g., student interaction in text-based chat rooms).

Speech data is uniquely central and authentic to peer dis-
course, but the field lacks key knowledge of automatically an-
alyzed speech in small group collaboration. Some exploratory
work has successfully developed speech analytics for a situa-
tion in which one student is asked to answer a question while on
camera [7]. Other researchers have taken a different approach
and are trying to apply speech analytics to very specific and
sophisticated aspects of collaborative learning, such as “idea
co-construction” [8] and “transactive contributions” [9]. This
project focuses on simpler behaviors in collaborative situations.

This project investigates the feasibility and challenges of
using the speech of small groups of students to determine the
quality of each group’s collaboration. We are developing fea-
ture detectors and using machine-learning techniques to find
ways to aggregate the signal from these detectors to agree with
the collaboration quality judgments of human observers. By an-
alyzing features such as speaker, when each participant speaks,
and how each participant speaks (e.g., rate of speech, loud-
ness contours, intonation patterns), automatic systems can de-
tect features of participation such as turn taking, crosstalk, emo-
tion, and on-task behavior. This approach is tractable without
the need to create a complete transcription. This paper presents
findings from early analyses of the audio data.

2. Method
2.1. Data

Participating students worked together in groups of three on a
set of collaborative math activities. The data set was collected
during 86 collaborative sessions (about 15-20 minutes each).
141 middle school students (67 in sixth grade, 40 in seventh
grade, and 34 in eighth grade) from six different schools par-
ticipated in the study. The gender breakdown was evenly split
across the students. Most students participated in 2 sessions
with different group configurations. At the time of publication,
annotation was completed for 43 of the 86 sessions; only those
sessions were used in the following analyses.

The collaborative math activities included 12 separate prob-
lems, each of which required the three students to work together
and talk to each other to coordinate their three answers to the
problem. In addition to a video recording of each group, three
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audio files were recorded from individual noise-cancelling mi-
crophones worn by students. These audio files were divided
into segments that corresponded to the time the group spent on
a particular math problem (items). The items were further di-
vided into 30 second segments (windows). The last window of
an item may be less than 30 seconds, depending on the length of
the item. Approximately 25% of the windows were less than 30
seconds. Any windows less than 5 seconds long were discarded.

We used a subset of the corpus, comprised of 43 annotated
sessions in which there were a total of 472 items and 1945 win-
dows. The number of items per session varies (mean = 11.05,
standard deviation = 3.69) because the groups of students com-
pleted a varying number of math problems and some groups
went back to previously completed problems and worked on
them again. Due to its dependence on both the number of items
completed and item lengths, the number of windows per session
varies even more (mean = 44.23, standard deviation = 10.28).

A team of five human judges, all education researchers, an-
notated the data at both the item and window level. All judges
underwent training on the coding scheme and went through
a calibration process to ensure reliability among them. After
training, the average of the Cohen’s kappa score for each pair
of judges across four sessions was 0.612. During the annota-
tion process, we selected additional calibration instances to en-
sure against significant drift on the application of the codes. All
disagreements were discussed by the human judges and a final
code was assigned.

Judges assigned one of four collaboration quality codes (Q
codes) to both the items and the windows. The Q codes rep-
resented the degree to which the three students were collec-
tively engaging in good collaboration. Importantly, the codes
depend not on how much each student spoke, but whether and
how much each student was engaged intellectually in the group
problem solving. More successful collaboration occurs when
students engage each others’ thinking [10]. In other words,
the collaboration quality codes differentiated between simple
engagement (whether or not students were talking and paying
attention) and intellectual engagement (whether or not the stu-
dents were engaged in actively solving the problem at hand).
The judges used both the audio and video recordings to make
their decisions.

In descending order of collaboration quality, the four Q
codes are defined as:

· Good Collaboration: All three students are working together
and intellectually contributing to problem solving.

· Out in the Cold: Two students are working together, but the
third is either not contributing or is being ignored.

· Follow the Leader: One student is taking the intellectual lead
on solving the problem and is not bringing in others.

· Not Collaborating: No students are actively contributing to
solving the problem; each is either off-task, or working
independently.

Additionally, if students did not have an opportunity to collab-
orate (e.g., they were waiting for technical help), then the win-
dow was coded as not applicable (N/A). All items and windows
coded as (N/A) were discarded from the data set. 435 items and
1623 windows remained. The Q codes are well distributed at
both the item and window level, as seen in Table 1.

Table 1: Distributions of the Q Codes.

Good Cold Follow Not
Item Level 0.39 0.24 0.22 0.15
Window Level 0.32 0.28 0.22 0.18

2.2. Features

2.2.1. Speech activity features by group

To extract segmental and durational information from the
speech signal, we used a Speech Activity Detection (SAD) sys-
tem to identify the speech regions and exclude the silent and
noisy regions. Our data collection and experimental setup al-
lowed students to speak freely. This freedom resulted in audio
recordings with overlapping speech from the three student par-
ticipants.

To solve this problem, we used a SAD system based on
speech variability [11, 12] and ran the system independently on
each of the three student channels. Finally, we used a speech
variability threshold optimized on a small set of four samples.
The thresholded output on each audio channel was used to iden-
tify the student-specific speech signal and eliminate the noise,
silence or cross-talk regions.

Features derived from SAD output capture information
about the number, duration, and location of speech regions.
They are thus related to features used in studies of dominance
in multiparty meetings, [13, 14], although the features we used
differ in details. We used the SAD output to create several
duration-related statistics: total duration of speech for each stu-
dent (Total Durations 1, 2 and 3); the duration in which each
student was the only speaker (Solo Durations 1, 2 and 3); the
duration in which each pair of students spoke simultaneously
(Overlap Durations 1-2, 1-3 and 2-3); the duration in which all
students spoke simultaneously (All Duration); and the duration
in which all students were silent (No Duration).

Two of the SAD-derived statistics (All Duration and No
Duration) characterize the group as a whole and were used di-
rectly as group-level features. The remaining sets of statistics
(three each for Total, Solo and Overlap Durations) characterize
SAD activity for individual speakers (or speaker pairs for Over-
lap Durations). To obtain group-level features for each set, we
first converted the three statistics comprising each set to propor-
tions (pi) by dividing them by their sum. We then characterized
the distribution of each set using Shannon entropy [15]:

n∑

i=1

pi log2

(
1

pi

)
(1)

Here n is 3 as there are 3 speaker-level measurements per set.
A maximum value (log2 3 ≈ 1.585) indicates a window dur-
ing which all three students (or overlapping pairs) are speaking
equally, and a minimum value (0) indicates a window during
which only one of the students (or overlapping pairs) speaks.

We used two versions of the SAD-derived features in anal-
ysis: raw values and group-normalized values. Features were
normalized because speakers bring idiosyncratic SAD habits
to the group. Normalized SAD features emphasize relative
changes over the analysis windows; unnormalized features do
not. We normalized by subtracting the mean of each feature
across each session.
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Figure 1: Entropy of Total Duration
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Figure 2: Entropy of Solo Duration
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Figure 3: Entropy of Overlap Duration

2.2.2. Prosodic features by individual speaker

We examined a range of features that capture pitch, energy,
voicing, and spectral tilt patterns for individual speakers. Unlike
the speech activity features, prosodic features in this study were
computed “blind” to the prosodic activity of the other partici-
pants. Although this approach provides a real-time processing
advantage, theoretically we expect performance to be subop-
timal since features are not aware of what other speakers are
doing. Mapping prosodic features from speaker level to group
level is more complex, given that frame-level prosodic infor-
mation is not binary, as it is for speech activity. In this study,
we focus only on the speaker-level prosody features, and leave
mapping to the group level for a later study.

Prosodic features were computed for each speaker during
each window, and by design did not use any word, phone or
other segmentation information. The following features were
based on snack get f0 [16] with default parameter settings:
mean and standard deviation of fundamental frequency (f0),
standard deviation and maximum of the root mean square en-
ergy, and standard deviation and maximum of the peak autocor-
relation. In addition, pitch was post-processed [17] to locate f0
maxima and record both pitch peak values and pitch peak loca-
tions in time. The latter were used as a crude way to capture
the distribution of syllable locations, as an estimate of speak-
ing rate and rhythmicity measures. Features used in classifica-
tion included the maximum, mean, and variance of the distance
between peaks, the distance between the window start and the
maximum pitch peak, and the standard deviation of the peak f0
values. Spectral tilt features (n=7) included the mean, standard
deviation and maximum values of features described in [18].
The idea was to capture changes in vocal effort, as well as voice
quality, that could be used to differentiate dominance, uncer-
tainty or off-talk. For all features, two versions were computed:
an un-normalized version and a version normalized by session
statistics for the speaker. The latter used mean normalization;
percentile normalization gave similar results.

2.2.3. Classifiers

Machine learning experiments were conducted to assess the pre-
dictability of collaboration labels. These experiments used both
normalized and non-normalized versions of both speech activ-
ity features and prosodic features. Group-level features based
on speech activity comprised 1623 datapoints with 5 feature
dimensions each. Prosodic features were computed indepen-
dently for each speaker. Since there were 3 speakers per group,
there were 3 times as many datapoints (4869 datapoints), as
well as a larger set of features (30 dimensions). Predicted val-

ues were Q code annotations, annotated at the group level; the
codes were replicated at the speaker level for classification ex-
periments involving prosodic features. Since SAD-derived en-
tropy features and many prosodic features depend on the pres-
ence of speech (and, in many cases, voicing), there were miss-
ing values in both types of feature sets; these were replaced by
the mean values of non-missing data.

Classification was performed using the AdaBoost Stage-
wise Additive Modeling using a Multi-class Exponential loss
function (SAMME) algorithm [19]. In total, 10 Random Deci-
sion trees were built and fitted to the data by means of boosting
[20]. Classification used 5-fold cross validation. For both SAD-
derived and prosodic features, folds were created such that no
speakers were present in both train and test set partitions.

The AdaBoost algorithm tries to approximate a Bayes clas-
sifier by means of an iterative procedure that combines many
weak classifiers. Specifically, the AdaBoost algorithm starts by
building a classifier with un-weighted training samples. The
algorithm then increases the weights for the misclassified data
samples and builds a new classifier, taking into account the new
weights. This procedure is repeated iteratively. Each classifier
is assigned a score, and the final classifier is the linear combi-
nation of the classifier from each stage [21]. For multi-class
classification, the AdaBoost algorithm can be applied by reduc-
ing the multi-class classification problem to multiple two-class
problems, or by using the AdaBoost SAMME algorithm [19].

2.3. Results and Discussion

2.3.1. Descriptive statistics on speech activity features

Descriptive results for the speech activity features are shown
in Figures 1-3. The figures show Gaussian kernel density es-
timations of the speech activity entropy distributions, broken
down by Q code. We expect that most good collaborations in-
volve roughly equal participation, and thus segments coded as
“good” should have high entropy values (close to the maximum
of about 1.585). This appears to be borne out in all three plots,
in which the distributions of each entropy statistic for “good”
collaborations peak near the maximum entropy value. This in-
dicates that during good collaboration windows, students (and
all pairwise combinations of students) tend to speak roughly
equal amounts. Furthermore, the other collaboration types (in-
cluding “not”) have far lower densities of high entropy values,
indicating that when students are speaking equally it is likely,
though not certain, that they are collaborating well.

Similarly, for collaborations in which one student is dom-
inating, “follow the leader,” we might expect that the “leader”
would talk far more than the other two. This expectation would
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Table 2: Class results for F1 and (Accuracy) by model type. Chance using crude method: assign all tokens to most frequent class.

Chance Model

Q Code Brute Force
Prosodic by

Speaker
(Normalized)

Prosodic by
Speaker (Non-
Normalized)

Group Speech
Activity

(Normalized)

Group Speech
Activity

(Non-Normalized)
Good 48.5% (100%) 38.4% (38.5%) 39.4% (41.1%) 45.7% (52.4%) 52.3% (55.4%)
Cold 0% (0%) 28.8% (29.4%) 28.9% (31.0%) 40.4% (40.6%) 39.7% (41.4%)
Follow 0% (0%) 21.7% (21.0%) 22.6% (22.7%) 22.4% (22.3%) 23.5% (22.6%)
Not 0% (0%) 20.9% (21.8%) 24.7% (24.5%) 27.0% (25.6%) 26.0% (29.0%)

Overall Chance Model
Weighted average 15.7% (32.5%) 29.0% (29.2%) 30.2% (31.3%) 35.8% (37.8%) 37.9% (39.7%)
Unweighted average 12.2% (25.0%) 27.5% (27.7%) 28.9% (29.8%) 33.9% (35.2%) 35.4% (37.1%)

be evidenced by entropy scores near 0 for the Total and Solo
Duration statistics for “follow.” However, the expectation is not
reflected in the data.

For the “out in the cold” class, in which two students are
collaborating with each other to the exclusion of the third, we
might expect to see this best reflected in the Overlap Duration
plot. Specifically, one pair of students (the collaborating pair)
should overlap much more than the other two pairs, and we
should therefore see an entropy close to 0. This is borne out
in Figure 3, where the “cold” distribution peaks at 0.

2.3.2. Classification experiments

Results for classification experiments using AdaBoost are
shown in Table 2, using both F1 and accuracy (shown in paren-
thesis) as metrics since we are interested in precision and recall
irrespective of class priors. The F1 measure is defined in terms
of the harmonic mean of Precision (P ) and Recall (R):

F1 =
2PR

P +R
(2)

Results are shown at both the class level (Q codes) and the over-
all level (weighted and unweighted averages). As a point of
comparison to a system without any information, we provide
performance for a “brute” force approach that assigns all tokens
to the most frequent class–in this case, “good.”

As shown, all three models outperform the brute force clas-
sifier. The SAD features are better predictors overall than the
prosodic features. This result is consistent with the definitions
of the four classes, since spoken participation by different num-
bers of students partly (but not completely) determines anno-
tations. SAD features also take into account time-aligned in-
formation about talk patterns of all members of a group, while
the current prosodic features know only about one speaker at a
time. Despite these limitations, prosodic features still provide
information. They give almost the same performance as SAD
features for “not” and “follow”, and are less biased toward the
frequent class than are SAD features. Further gains may be
possible by mapping prosodic features to the group level, or if
combined with SAD features at the speaker level.

We analyzed feature importance by ranking features ac-
cording to classifier information gain. Interestingly, the most
useful features measured variance and/or maximum values of
pitch, variability in spectral tilt, or variation in the location of
pitch peaks within the window (correlated with lack of regu-
lar pitch accent timing). More analysis is needed, but these
features tend to capture a departure from a canonical speak-
ing style. These features may be most important because they

help detect off-talk, including stylistic changes associated with
joking, strange noises, imitations, teasing, exclamations, and
so on. This explanation is consistent with the relatively good
performance of prosody for the “not collaborating” class, since
off-talk was considered a non-collaborative behavior.

For both feature types, mean-based and percentile-based
normalization using the speakers session statistics gave no ad-
vantage over the features that were not speaker-session normal-
ized. This result deserves further attention. Since SAD fea-
tures capture relative amounts of talk over the group, one would
expect that normalizing for session would help adjust for dif-
ferences in idiosyncratic groupings of speakers with different
SAD habits. For prosodic features, pitch is typically speaker-
normalized, but this was not motivated here. One possible ex-
planation is that the age ranges of the children made this less
of an issue than for adult males and females, but more investi-
gation is needed. A second possibility is that better normaliza-
tion is needed, although speaker-based percentile normalization
of pitch should be an appropriate first approximation. A third
possibility is that the types of events the features cue could be
extreme enough to show up regardless of normalization (for ex-
ample, features associated with exclamations or off-talk).

3. Conclusions
Collaborative learning is an important skill for students to mas-
ter, and there is a clear need to assist teachers in monitoring si-
multaneous group learning in the classroom. Our findings offer
first results which suggest that automatic processing of speech
offers promise for addressing this important need. We used sim-
ple features based only on speech activity and speech prosody.
This approach is privacy-preserving, since it uses no video or
lexical information.

Results reveal that both SAD and prosodic features perform
well above chance, and offer potential complementarity based
on class-specific results. Furthermore, session-based normal-
ization at the speaker level did not appear to be necessary, sug-
gesting good performance may be achieved without look-ahead.
Future work will address the mapping of prosodic features to the
group level, and assessment of whether further gains are possi-
ble using group-level fusion of the two feature types.
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