The Development of Prosodic Focus-marking and Declarative Question Intonation in Thai Learners’ Mandarin

Zenghui Liu, Shufen Liang, Lei Zeng

Yunnan University, China
zenghui_liu@ynu.edu.cn, liangshufen@mail.ynu.edu.cn, zenglei@mail.ynu.edu.cn

Abstract
This study investigates the development of prosodic focus-marking and declarative question intonation in Thai learners’ Mandarin. Mandarin SVO statements and declarative questions with varying information structure were elicited through two picture-mediated tasks. The speakers were native speakers of Thai who were intermediate and advanced learners of Mandarin. Our data shows that Thai learners of Mandarin vary duration, pitch span, pitch maximum for differentiating statements from declarative question, similar to native speakers of Mandarin. However, their use of prosodic cues to encode focus in different sentence types varies. Further, no difference was found between intermediate and advanced learners. The present study thus provides evidence that Thai learners of Mandarin master the use of prosody for encoding focus in statements earlier than in declarative questions in their L2, while they are not native-like yet.

Index Terms: second language acquisition, prosody, prosodic-focus marking, interrogative meaning

1. Introduction
Prosody plays important roles in speech to convey communicative meanings, such as highlighting new information in a sentence (i.e. focus) and encoding interrogative meanings [6, 7, 9, 14, 16, 18 & 19]. Previous studies support that prosodic focus-marking and interrogative meaning are defined and organized by individual communicative functions that are independent of each other in languages [10 & 15]. For example, in Mandarin, [10 & 15] showed that native speakers of Mandarin expanded the pitch span and lengthened the duration of the focal constituent, compressed and lowered the pitch of the post-focal constituent, but leaving that of the pre-focal constituent largely unaffected in read speech. Similar results were also reported in semi-spontaneous speech [16]. Further, Liu & Xu [10] revealed an interaction between focus and interrogative meaning in the form of a boost to the pitch raising by the question starting from the focal constituent. Yuan [17] found that focus at the end of a sentence makes statement intonation harder to identify but makes question intonation easier to identify. Together, previous studies revealed a quite complex mechanism of parallel encoding of focus and interrogative meaning in Mandarin.

Due to the observed use of prosody for encoding focus in languages, such as in Mandarin, the acquisition of prosodic-focus marking in L2 learners has recently received considerable attention [3, 4, 8 & 12]. It has been suggested that the acquisition of prosodic focus marking is quite difficult for L2 learners. For example, Chen et al. [3] examined advanced English learners of Mandarin and found that the learners produced focus-related duration changes in a manner similar to native Mandarin speakers. However, those advanced learners did not show native-like patterns of in-focus changes in intensity on Tone 2, mean pitch on Tone 1, and pitch span on Tone 4.

Despite the considerable attention paid on the acquisition of prosodic-focus marking in L2 acquisition, little attention has been paid on the development of prosodic focus-marking and declarative question intonation. The questions that arise for learners of Mandarin are thus: 1) whether and how learners of Mandarin prosodically distinguish statement and declarative sentence-medially; 2) whether and how learners of Mandarin acquire parallel encoding of focus and interrogative meaning; 3) whether and how learners’ use of prosody for encoding focus and interrogative meaning develops. We address these questions by examining the Mandarin production of five intermediate and five advanced Thai learners of Mandarin. The intermediate Thai learners examined in the present study averagely had less than one year of Mandarin-learning experience in China and passed HSK level 4. The advanced Thai learners of Mandarin averagely had more than five years of Mandarin-learning experience in China and passed HSK level 5.

2. Methodology
2.1. Basic layout features
We adopted and developed a picture-matching and picture-marking game [2, 11 & 16] to elicit semi-spontaneously produced statements and declarative questions respectively with varying information structure. In the picture-matching game, three piles of pictures were used: the experimenter and the participant each held a pile of pictures ordered in a certain sequence; the third pile of pictures were scattered around on a table. In the experimenter’s pictures (Pile A), there was always something missing, like a subject, an action (verb), an object, or all three. The participant’s pictures (Pile B) all contained a complete event. The participant’s task was to help the experimenter with sorting out pictures from her own pile and the third pile (Pile C) that went together.

In the picture-marking game, the participant needed to seek information of various scopes from the experimenter by asking a declarative question in each trial. In the game, two piles of pictures and a marker were used: the first pile of pictures ordered in a certain sequence was put in front of the experimenter and participant (Pile D); the second pile of pictures was stored in a box and put next to the experimenter (Pile E); the marker was held by the participant. In Pile D, there was always information missing, like a subject, an action (verb), an object, or all three (which showed a blurring picture). In the top right corner of each picture of the first pile, a small picture was covered by a sticker. This small picture
provided the missing part which could be correct or incorrect. The second pile of pictures (stored in the box, Pile E) all contained a complete and correct event. The participant’s task was to mark the correctness of the small picture on the sticker.

By using these two experiments, SVO sentences with the same word order and lexical components, which differs in sentence type (i.e. statement vs. question) were elicited.

2.2. Experimental materials

Both statements and declarative questions in four focus conditions were elicited via the picture-marking and picture-matching game: narrow-focus on the subject NP in sentence-initial position (NF-i), narrow-focus on the verb in sentence-medial position (NF-m), narrow-focus on the object NP in sentence-final position (NF-f), and broad focus (BF). The focus condition and sentence type were set up by varied context, as illustrated in examples (1) to (2), where the focal constituents appears in square brackets.

Target sentence: 小猫剪书

The cat cuts a book

(1) **NF-f in statement:**

Ex: Look! The cat! There is also a pair of scissors. It looks like the cat cuts something. What does the cat cut?

Pa: The cat cuts [A BOOK].

(2) **NF-f in declarative question:**

Ex: Look! The cat! There is also a pair of scissors. It looks like the cat cuts something. Could you open the sticker and take a look at the small picture? Then you can ask me a question, I will help you to check in my box.

Pa: The cat cuts [A BOOK]?

We included all the Mandarin lexical tones in the experimental design, including Tone 1 (high level tone), Tone 2 (rising tone), Tone 3 (dipping tone) and Tone 4 (falling tone). The SVO sentences were constructed by selecting four subject-noun, verbs and objects in each tone. This resulted in 64 Subject-verb-object combinations. Then, these combinations were combined with 4 focus conditions. In total, we had 512 target sentences, and 256 for each picture condition. Every sentence was created for each target sentence. Every sentence was segmented into words in the “word” tier, then landmarks demarcating verb onset and offset, and the locations of pitch-maximum and pitch-minimum within the verb were added to the “duration” and “pitch” tiers. The landmarks for the onset and offset of verbs were determined according to the information in the waveform and spectrogram.

The pitch values of the pitch landmarks and the time values of the word boundaries were subsequently extracted via Praat scripts. Two measures from these values were calculated: word duration (i.e. offset time minus onset time) and pitch range (i.e. the difference between the maximum pitch and the minimum pitch). We found that the majority of the target verbs with Tone 3 (dipping tone) were produced with either creaky voice or complex tonal patterns. In order to present a comprehensible report, the present study will focus on the results (N = 3632) of Tone 1 (high level tone), Tone 2 (rising tone) and Tone 4 (falling tone). In 98% of the usable responses, the pitch values could not be reliably measured. These responses were thus excluded from the analysis.

3. Analysis and results

3.1. Statistical analyses

Statistical analyses were conducted using mixed-effects modelling in R [13]. In all models, the SENTENCE TYPE, TONE, FOCUS, GROUP were included as fixed factors, while the speaker (i.e. the participant) and sentence (i.e. the order of elicitation) were included as random intercepts. SENTENCE TYPE had two levels (i.e. “statement” and “question”), FOCUS had four levels (i.e. “BF”, “NF-F”, “NF-i”, and “NF-m”), GROUP have two levels (i.e. “intermediate” and “advanced”) and TONE referred to the lexical tones of the target verbs, which had three levels (i.e. “Tone 1”, “Tone 2”, and “Tone 4”). Outcome variables were the duration, pitch span, pitch maximum, and pitch minimum of the verbs. Following [5], our models were constructed and evaluated in a stepwise fashion. When building the models, only the factors and interactions that significantly improved the fit of the model were retained until the best fit model was determined.

3.2. Duration

For the analysis of duration, we found that the best-fit model was the model contained the main effects of TONE, $\chi^2 (2) = 28.131, p < .001$, FOCUS, $\chi^2 (3) = 38.867, p < .001$, SENTENCE TYPE, $\chi^2 (1) = 19.823, p < .001$, and two-way interactions between SENTENCE TYPE and FOCUS, $\chi^2 (3) = 11.16, p < .05$, SENTENCE TYPE and TONE, $\chi^2 (2) = 50.92, p < .001$. The main effect of SENTENCE TYPE was such that the duration of the target verbs in declarative questions were significantly shorter than their counterparts in statements (p)}
<.001. By further exploring the effect of FOCUS and GROUP within the sentence type, we found that the duration of the target verbs only varied with focus condition in statement (p < .001), but not in questions, regardless of tones and groups, as shown in Figure 1.

3.3. Pitch span

For the analysis of pitch span, we found that the best-fit model was the model contained the main effects of TONE, $\chi^2 (2) = 258.07, p < .001$, SENTENCE TYPE, $\chi^2 (1) = 382.79, p < .001$, and a two-way interaction between SENTENCE TYPE and GROUP, $\chi^2 (2) = 42.12, p < .001$. The main effect of SENTENCE TYPE was such that the pitch span of the target verbs in declarative questions were significantly wider than their counterparts in statements (24.5 Hz, $p < .001$). However, there is no evidence that different groups varied pitch span for encoding focus in different sentence type.

3.4. Pitch maximum

For the analysis of pitch maximum, we found that the best-fit model was the model contained the main effects of TONE, $\chi^2 (2) = 399.51, p < .001$, SENTENCE TYPE, $\chi^2 (1) = 313.43, p < .001$, a two-way interactions between SENTENCE TYPE and TONE, $\chi^2 (2) = 64.277, p < .001$, and a two-way interactions between SENTENCE TYPE and GROUP, $\chi^2 (2) = 76.07, p < .001$. The main effect of SENTENCE TYPE was such that the pitch maximum of the target verbs in declarative questions were significantly higher than their counterparts in statements (40.3 Hz, $p < .001$). By further exploring the effect of GROUP within the sentence type, we found that both groups did not vary the pitch minimum of the target verbs for encoding focus in statement or in questions, regardless of tones, as shown in Figure 4.

3.5. Pitch minimum

For the analysis of pitch minimum, we found that the best-fit model was the model contained the main effects of TONE, $\chi^2 (2) = 40.16294, p < .001$. The main effect of SENTENCE TYPE was such that the pitch maximum of the target verbs in declarative questions were significantly more than their counterparts in statements (40.3 Hz, $p < .001$). However, there is no evidence that different groups varied pitch minimum for encoding focus in different sentence type, as shown in Figure 2.
4. Conclusions

Our results showed that Thai learners of Mandarin vary duration, pitch span, pitch maximum for declarative sentences, as similar to native speakers of Mandarin. Specifically, Thai learners of Mandarin shortened the duration of the sentence-medial constituent of Tone 1, 2 and 4 in declarative questions relative to its counterpart in statements, regardless of focus condition. Further, they expanded the pitch span of the sentence-medial constituent of Tone 1, 2 and 4 in declarative questions relative to its counterpart in statements, regardless of focus conditions. Specifically, they raised the pitch maximum of the sentence-medial constituent of Tone 1, 2 and 4 in declarative questions relative to its counterpart in statements, regardless of focus condition.

However, their use of prosodic cues to encode focus in different sentence types varies. Specifically, the use of duration for encoding focus was only found in statements, not in declarative questions. Further, no difference was found between intermediate and advanced learners.

To conclude, the present study reveals a confliction in the use of prosody for parallel encoding of different intonation components, i.e. focus and interrogative meaning, in learners’ L2. It suggests that the successful use of prosody to encode one component of intonation, e.g., focus, does not guarantee the parallel encoding of different intonation components. Thus, the present study provides evidence that components of intonation, such as focus and interrogative meaning, are defined and organized by individual communicative functions that are independent of each other [10 & 15], from an acquisition perspective, as suggested in [19]. Further, by examining intermediate and advanced learners, the present study provides evidence that Thai learners of Mandarin master the use of prosody for encoding focus in statements earlier than in declarative question in their L2, while they are not native-like yet. In addition, there is no evidence that intermediate learners differs from advanced learners. However, in the present study, we define Mandarin proficiency level by using HSK test which did not include oral examination. It might suggest that the teaching and training of prosody should be put more weight on for advanced learners.

5. Acknowledgements

We are grateful to the Thai students from Yunnan University who participated in our experiment. We also thank Dr. Anqi Yang, Dr. Anna Sara Romstren, and Prof. dr. Aojin Chen for their enormous help and input. This study is supported by a grant (C176210207) from Yunnan University to the first author.

6. References