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Abstract

In noisy environment, performance of speech
recognition system trained in quiet environment is
degraded. We propose a new word recognition method
using an acoustic phonetic variability model for
Lombard effect that is one of the reasons for this
degradation. In this method, difference between a
spectral envelope of normal speech and that of
Lombard speech 1is represented by the acoustic
phonetic variability model, which are comprised of a
non-linear warping function on spectral frequency
domain for formant shift and spectral filters for changes
of formant bandwidths and spectral tilt. Each model is
trained with Lombard speech and provided for a
sub-phoneme HMM. In Lombard speech recognition,
the HMMs are modified with the acoustic-phonetic
variability models, and the duration parameters are
modified to compensate the word duration changes by
Lombard effect. Recognition experiments without
contamination-by-noise were conducted. The Lombard
speech data was comprised of isolated 100 words
spoken by 5 males hearing 90dB(SPL) pink noise
through headphones. The recognition rate was 98.6%
with this method, and 88.4% without the method.

1. Introduction
A speech recognition system, trained with speech
data spoken in quiet environment, performs poorly in
noise. The reason is not only a contamination of
speech signal by noise, but also acoustic phonetic
changes by Lombard effect that occur while speakers
change their speech manner to communicate in so

noisy environments as utterances are masked.
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A method of transforming word templates of normal
speech into Lombard speech using speaker adaptation
technique has been proposed in [1]. In this method,
based on a speech recognizer using a VQ codebook,
each feature vector given by normal speech’s codebook
is replaced by the average of Lombard speech’s feature
vectors,- corresponded to the codebook vector by DTW
between normal and Lombard speech data.

The above method is applicable to continuous
density HMMs of sub-phonemes by replacing each
mean vector of normal speech HMMs with the average
of Lombard speech feature vectors corresponded to the
HMMs.

However, the recognition accuracy for Lombard
speech with those HMMs is not satisfactory, since
spectral modification by Lombard effect has variability
depending on speaking effort or accent etc., even in
stationary noise environment. Moreover change of
word duration caused by Lombard effect degrades the
recognition performance.

To cope with the problem, we propose a new word
recognition method wusing an acoustic phonetic
variability model by Lombard effect. It is expected that
using the model we can represent the variability in
degree of the modification by Lombard effect. In the
model, the change in spectral envelope by Lombard
effect is divided into three factors; formant shift,
bandwidth reduction and spectral tilt change. For each
factor, we define a function that has a parameter which
controls degree of the spectral change.

Although the acoustic phonetic variability model is
applicable to a variety of recognition methods from
V@Q-based one to continuous density HMMs, we

describe a recognition method based on continuous
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density HMMs of sub-phonemes. Each sub-phoneme
HMM, trained with normal speech, is provided with the
acoustic phonetic variability model whose parameter is
trained with the HMM and Lombard speech data. A
mean vector of the HMM is transformed with its
acoustic phonetic variability model to recognize
Lombard speech. In addition, duration parameters of
the HMM are modified according to duration changes

observed in the Lombard speech data.

2. Acoustic phonetic variability model

The acoustic phonetic variability model is
constructed with three functions for formant shift,
bandwidth reduction and change of spectral tilt. The
formant shift is represented by a dynamic frequency
warping function obtained with DP matching between a
spectral envelope of normal speech and spectral
envelopes of Lombard speech. The bandwidth
reduction is approximated by the weighted-sum of a
peak-enhanced spectral envelope of normal speech and
the original spectral envelope.

When the spectral envelope of normal speech is
discretely represented by a sequence of log-powers as
{Si}, a modified spectral envelope by the acoustic
phonetic variability model is given by

Ti=Si+tgiw+6jw
and

j=it+eiw  0=01,...,0 @
where {Tj}, a sequence of log-powers, represents the
modified spectral envelope, and parameter | and ]
denote frequencies.

In equation (1), gjW is a log-power spectrum of a
filter representing the bandwidth reduction, 6w is a
log-power spectrum of a filter representing change of
spectral tilt, and 8 iw is a frequency warping function
representing formant shift. Parameter W is a variable
which controls degree of the modifications. The two

filters and one function are defined as

Biwy = W- Qi (2a)
gimw = w- Qi (2b)
Si@ = w- A (2¢)
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where, @i, Qi, Ai denote the average modification of
Lombard speech data. The ©i, Qi, Ai are obtained

with following procedures.

step 1. Obtain alignments of normal HMMs on
Lombard speech data with a Viterbi algorithm.

step 2. Carry out following sub-procedures for each
HMM.

2-1. Find the frequency warping function with
which the least matching distortion is
obtained averaging across all DP matchings
between the spectral envelope given by the
normal HMM and the corresponding spectral
envelopes of Lombard speech.

2-2. Obtain mean difference between the spectral
envelope given by the normal HMM and the
spectral envelopes of Lombard speech, in
which the influence of formant shift is
removed by frequency-warping according to
the warping function obtained in step 2-1.

2-3. Obtain g to minimize E given by equation
{3),

E= =i —-g P 3
I

where {Di} is the mean spectral difference
obtained in step 2-2 and {Pi}is a
peak-enhanced spectral envelope derived
from the spectral envelope given by the HMM.
Obtained {g ‘- Pi} represents a bandwidth
reduction filter, and the remainder, {Di—g
- Pi}, represents a spectral tilt modification
filter.
step 3. Make modified HMMs from the normal HMMs,
where each mean vector of the HMMs is
transformed with the frequency warping
function and two filters obtained in step 2.
step 4. Obtain new alignments with the modified
HMMSs on Lombard speech data, and return to
step 2 to iterate the steps 2, 3 and 4 several

times.

The parameter W can be set to a value equal or
greater than 0. In case of the absence of Lombard
modification, we can set the W to 0. In case of the

existence of Lombard modification, we can obtain
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greater modification with larger value of W and the same
modification as Lombard speech data by setting the w
to 1.

The suitable value of w is thought to be varied
according to vocal effort and accent. So it is desirable
to determine the W to minimize the distortion between
the modified HMM and each of the input feature
vectors. To represent these variability in W, we provide

plural values of W for every feature vectors.

[Duration compensation]

In the speech recognition method based on
sub-phoneme HMMs, duration control technique is
effective very much. But its performance is sensitive to
duration change by Lombard effect.

We use a compensation method for the duration
change using the alignments obtained while acoustic
phonetic variability models are trained. In this method,
we calculate the average ratio of normal duration to
Lombard speech’s duration for each sub-phoneme
across the all speakers and multiply the normal speech

duration by the ratio.

3. Experimental evaluation
3.1 Experimental conditions

Speech data used in our experiments were sets of
isolated 100 words, the names of cities in Japan,
spoken by 5 males. Lombard speech was produced by
the speakers hearing pink noise through headphones,
and thus noise-free.

The speech data were sampled at 10kHz, and
pre-emphasized by a filter (1 —0.952z7"). Using
Hamming window (25.6msec), 12-order LPC analysis
were carried out every 10msec, and 16 LPC cepstral
coefficients were extracted.

The HMMs for normal speech were trained for each
speaker using 4 sets of the 100 words spoken by the
speaker hearing no noise. The acoustic-phonetic
variability models were trained with 4 sets of 100 words
spoken by the speaker hearing 90dB(SPL) pink noise.
Another set was used for evaluation.

Every sub-phoneme HMMs had 1 state and 1 loop.
A word model was represented by a string of

sub-phoneme HMMs connected by null-transitions.
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Frequency warping and filetering were carried out by
matrix computation and addition in cepstrum domain.
Thus peak-enhancement of a spectral envelope was
realized by quefrency-weighting of the original
cepstrum.

3.2 Evaluation by word recognition

In order to validate the acoustic phonetic variability
model, we conducted recognition experiments using
Lombard speech produced in 80 and 90dB(SPL) pink
noises. Figure 1 shows the results, when the value of
W was varied from O to 1.6 by 0.2. The filled symbols
denote word error rates and blanked symbols denote
average distortions. The squares denote the results for
Lombard speech by 90dB(SPL) pink noise. This
condition was as same as the training data. The circles
denote the results for Lombard speech by 80dB(SPL).

For Lombard speech by 90dB(SPL), w=1.0 is
optimum. For Lombard speech by 80dB(SPL),
optimum value of W is 0.4 or 0.6. These results show
that our model is able to represent the variability of

Lombard modification.

3.3 Distribution of Lombard modification

Next, we investigated a distribution of optimum
value of W for each feature vector of mebard speech
used in the training,

Figure 2 shows a histogram for the optimum values
of W averaged for Lombard speech spoken by 5 males.
As shown in the figure, it appears that the Lombard
modifications of sub-phonemes have variability

frame-by-frame.

3.4 Duration change

Duration parameters of sub-phoneme HMMs were
comprised of mean values and standard deviations.

For the mean values and standard deviations, the
ratios of normal speech to Lombard speech were
calculated using alignments of HMMs on normal speech
and Lombard speech. The Lombard speech was
produced in 90dB(SPL) pink noise.

We observed that the mean durations of stationary
parts of vowels and transient parts of voewls adjacent

to word-tails were distinguishably extended for all
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speakers. Those facts agree with results in [2]. We
also observed that for most of sub-phonemes, the
standard deviations were larger than those of normal

speech for all speakers.

3.5 Lombard speech recognition

Speaker dependent word recognition experiments
were executed with noise-free Lombard speech by
90dB(SPL).
0.8, 1.0, 1.2, 1.4} according to the result in 3.3. We

selected the optimum W from the set frame-by-frame.

The set of parameter Ws was set as {0.0,

Each duration parameter of sub-phoneme HMMs was
modified with the average of all speakers’ ratios
obtained in 3.4.

Figure 3 shows the average word error rates for 5
the

recognition with normal HMMs,

speakers. In figure, “normal” denotes
“adapt” denotes
recognition with Lombard adapted HMMs, mean vectors
of which are made by a speaker adaptation method.

The error rate of 1.4%, the best performance, is

achieved by our method “APVM”

4. Conclusion

In this paper, we have proposed a word recognition
method using the acoustic phonetic variability model
representing spectral changes of utterances by Lombard
effect. The model is comprised of a non-linear warping
function on spectral frequency domain for representing
formant shift, and two spectral filters, one of which
represents bandwidth reduction of formants, and the
other represents mainly spectral tilt changes. A
compensation method for changes in sub-phoneme
duration has also been described.

Experimental  evaluations were executed in
speaker-dependent isolated word recognition based on
continuous density HMMs of sub-phonemes.
Simulated Lombard speech of Japanese 100 city names
were spoken by 5 males hearing 90dB(SPL) pink noise
through headphones.

From the experiments, in which the proposed
method achieved better performance than the speaker
adaptation method, the effectiveness of the proposed

method has been confirmed.
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Figure 1: An example of word recognition performance
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Figure 2: Distribution of optimum Ws of every feature vectors

in Lombard speech data by 90dB(SPL) pink noise.
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Figure 3: Results of Lombard speech recognition.
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