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ABSTRACT

In this contribution a normdization procedure for automatic
speech recognition isintroduced which ams at reducing speaking
rate specific variaions of the features of the phonetic dasses. A
“spurtwise” caculation of normaization factors alows to capture
changes of the speaking rate within one utterance. The cost-
saving implementation using linear interpolation of the origina
features and a word graph rescoring procedure leads to a moder-
ate increase in computational 1oad compared to the basdline sys-
tem without speech rate normali zati on.

In addition a two-step procedure which combines voca tract
length normdization (VTLN) and speech rate normalization
(SRN) has been developed. Experiments showed, that applying
SRN to a VTLN-based recognition system leads to relative re-
duction in word error rate of 4.2%. This is comparable to the
decrease observed when using SRN on a system without VTLN.
All in dl the combination of VTLN and SRN results in a 15%
reduction of word error rate compared to the basdline system.

1. INTRODUCTION

The speaker independent processing of spontaneoudy spoken
human-to-human diadogues is a specid chdlenge to present
automati c speech recognition systems. Severa factors contribute
to additiona variations of speech signas in comparison to read
speech where the speaking mode is generaly well defined. These
additional variations result in higher confusions between the
phonetic dasses of the pattern matching process consequently to
an increase in word error rates of large vocabulary continuous
speech recognition (LVCSR) systems.

Among other factors like e.g. the use of pronundation variants,
the speaking rate is a source of variation which can lead to a
considerable increase in error rate. Especially when people talk
faster than normd the performance of state of the art LVCSR
systems is often poor with error rates for fast speech being twice
to four times higher than norma (e.g. [1], [2], [3], [4], [5], [6])-
However, we observed a 30 to 40% increase in error rate on both
the Verbmobil evaluation and crossvalidation set 1996 ([7], [8])-

Severa approaches have been suggested to improve recognition
of fast gpeech. Changes of hidden Markov modd (HMM) sate
trangition probabilities ([1], [9] and [3]) as well as an adaptation
of aneura net phonetic probability estimator ([1], [9] ) proved to
be suitable methods. In earlier studies we showed the usefulness
of maximum aposteriori (MAP) estimation to adapt the acoustic
models (HMMs) to fast speech ([10]). In addition it was demon-
strated that the use of pronundation variants and a maximum
likelihood based approach to voca tract length normalization
(VTLN) were helpful for this purpose ([8]).

The basicidea of normalization proceduresin genera —in contrast
to adaptation— is to reduce the variations which have to be cap-
tured within the acoustic model of each phonetic dass of the
recogni zer. By reducing the variations of the feature vectors of the
phonetic dasses, the distributions of the acoustic modds in the
feature space will get “sharper”. Thus the normalization proce-
dure will reduce the overlap between the different “normalized”
phonetic dasses and thus the confusion of the recognizer. As a
consequence the normali zation procedure has to be applied during
parameter estimation to create “normaized” models as well as
during testing.

In previous studies ([8]) we were able to show that the reduction
of speaker specific variations as well as the reduction of phonetic
variations (use of pronunciation variants) can be helpful to reduce
the error rates for fast speech. We assume that the combination of
spesker spedific, phonetic and speech rate spedific variations is
espedaly adverse for fast speech. A normali zation with respect to
one of the different sources of variaion is advantageous for ex-
treme conditions (e.g. fast speech). In our experiments we showed
that VTLN is especidly effective for fast speech, whereas the use
of pronundiation variants proved to have potentia to reduce error
rates for both slow and fast speech.

In this study we will present a method of combining two different
approaches to normaize the feature vectors extracted from the
speech signd. Apat from the wel known voca tract length
normalization (see section 3.2) to reduce spesker specific varia-
tions, a madified approach to speech rate normdization (SRN) is
introduced (see section 3.1). Whereas the first gpproach aims at
reducing “secondary” (=not related to the speaking rate) varia-
tions the second approach results in a reduction of “primary”
(=speech rate specific) variations of the feature vectors. A specid
emphasisis put on the combination of normalization (see section
3.3) with respect to both primary and secondary vari ations.

2. METHODS
2.1 Speech Rate Normalization (SRN)

Principle: The idea of speech rate normalization is introduced in
[11] and is cdled cepstrum length normaization (CLN). The
pronciple is to normaize the phone duration by stretching the
length of the utterance in order to match the “ standard” lengths of
the phonetic units which are obtained from the training corpus. It
is based on the observations of [5] that the dynamic features (first
and second order derivatives of the spectrd features) are most
affected by changes of the speaking rate.

Figure 1 illustrates the use of the same 10 ms frame grid for three
different speaking rates (dow, medium and fast). Especidly the
caculation of the first and second order derivatives (delta- and



deltaddta-features) is affected. Due to the lengthening or short-
ening of the phonetic units for the different speaking rates these
dynamic features can belong to different phonetic units. The
“phonetic distance” between the static feastures and the dynamic
features changes. Whereas al kinds of festures of the centra
frame of the phoneme “u:” (see figure 1) are assigned to this
phonetic unit (“u:”) for slow speech, the dynamic features are
assigned to neighboring units (“g’, “t” and “@") for fast speech.
This results in essentia differences between speech rate specific
versions of the phonetic units.
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Figure 1: lllustration of the calculation of static (spectrum) and
dynamic (delta and deltadelta) features for different speaking
rates for the first part of the utterance “guten Tag meine Damen
und Herren” (engl. “good afternoon ladies and gentlemen”) using
acongtant frame grid. Thetranscription is givenin SAMPA.

To overcome this problem the frame grid for caculating the
dynamic features has to be adjusted to the actual speaking rate.
This is illugtrated in figure 2. A broader grid is used for dow
speech and a narrower one for fast speech. Thus the dynamic
features are ca culated using s milar parts of the speech signal and
the “phonetic distance” should remain constant for different
speaking rates.
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Figure 2: lllustration of the calculation of static (spectrum) and
dynamic (delta and deltadelta) features for different speaking
rates for the first part of the utterance “guten Tag meine Damen
und Herren” (engl. “good afternoon ladies and gentlemen”) using
a frame grid which is adjusted to the actua spesking rate. The
transcription is given in SAMPA.

Finding an optimal frame grid: Different agorithms for the
determination of anew frame grid are evaluated in [11]. Whereas
a phone-by-phone gretching results in high improvements in
performance in supervised mode, this method completely failsin
unsupervised mode. Therefore the authors suggest to apply a
sentence-by-sentence procedure using an average factor pmig:
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This mean factor is obtained by averaging al N phone-by-phone
normalization factors p; which are caculated from a gamma
distribution estimated on the training material.

speech rate categories number of utterances on the

per utterance training material

“fagt” only 1194
“medium” only 5485
“dow” only 140
“medium” and “fast” 1576
“medium” and “dow” 1953
“dow” and “fast” 64
dl categories 877
no valid spurt 66
sum 11355

Table 1. Intra-utterance variation of the speaking rate on the
training materia of the Verbmobil evaluation 1996.

This sentence-by-sentence procedure cannot be used to model
changes of the speaking rate within one sentence. However, we
found that a considerable number of utterances within the training
materia contains speech of different speech rate categories. Table
1 shows the digtribution of spurts (spurt=between pauise region,
see [12]) of different speech rate categories for the utterances of
the training material of the Verbmobil evauation 1996. A sepa-
rate value of the speaking rate was determined for each spurt. For
60% (6820 sentences) of the training materia the speaking rate
remai ns constant, whereas 40% of the sentences contain spurts of
different speech rate categories. For these sentences, it is impor-
tant to caculate different normaization factors for each spurt.
Therefore we decided to use a spurtwise average of the normai-
zation factor p;. In addition preliminary experiments showed that
it is favorable to calculate this spurtwise factor by summing up
the expected and the actua lengths of the phones instead of cd-
culating an average quotient using equation 1.
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Calculating normalized features. After having determined the
new optima frame grid, speech rate normdized features are
caculated. Firgt, the static components on the new grid are inter-
polated using the static festures of the origind 10 ms grid. A
smple linear interpolation proved to be sufficient. Second, new
dynamic features are caculated using the static festures of the
new grid.

For the estimation of speech rate normalized HMMs during
training the phonetic transcription of each spurt is used to deter-
mine the optimal normali zation factor.

For normdizing the feature vectors during recognition both a
supervised and an unsupervised procedure were implemented.
Wheress in supervised mode the transcription is assumed to be
known, in unsupervised mode a phone recognizer is used to
determine an estimate S« o Of the speaking rate of each spurt sp.
In addition the mean sret Of the spurtwise estimates on the train-
ing materid is caculated to be able to determine approximate
values for the normalization factors of each spurt:
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Recognition: Using both supervised or unsupervised SRN, the
speech rate normalized feature vectors are applied to perform a
second recoghition pass using alattice rescoring a gorithm.

1. In the firgt recognition pass a word graph is produced on the
bass of unnormdized feature vectors and unnormalized
acoustic models. In unsupervised mode, a phone recognizer is
run simultaneoudy.

2. In a second pass, the speech rate normalized feature vectors
and the speech rate normdized HMMs are used to rescore the
word graph.

2.2 Vocal Tract Length Normalization (VTLN)

Principle The VTLN is awell known gpproach to speaker nor-
malization, which aims at reducing speaker specific variations of
the speech signd caused by different lengths of the vocal tract.
Different approaches can be found in the literature which differ
both in the warping-functions used to transform the origina
spectrum into the normalized spectrum as well as in the way of
finding an optimal vaue of the warping factor a which is com-
monly used to define the amount of warping (e.g. [13], [14], [15],
and [16]).

Warping procedure: For the training of speaker normalized
acoustic modds we used a ML-based approach smilar to [14].
The warping is performed using a piecewise linear function for
transforming the speaker specificinto the normaized spectrum.

During recognition either supervised or unsupervised VTLN can
be performed. Whereas in supervised mode the transcription is
assumed to be known when choosing the optima warping factor,
in unsupervised mode a Gaussian mixture model (GMM) is used
to choose the warping factor [15].

2.3 Combination of VTLN and SRN

The combination of VTLN and SRN is implemented in a two-
step procedure. Firdt, an optimal warping factor is determined to
cal culate speaker normdized feature vectors, these feature vectors
are then used to perform the speech rate normali zation.

As described in section 3.1 the SRN procedure is redlized in
supervised mode during training and as a second recognition pass
applying a word graph rescoring agorithm during recognition.
Instead of using unnormalized acoustic models and unnormalized
feature vectors, voca tract length normaized models and feature
vectors are gpplied.

3. EXPERIMENTSAND RESULTS

Recognition experiments were conducted on the speech materia
of the Verbmobil evaluation 1996. Decision tree based context
dependent HMMs (triphones) were estimated on the speech
materid. Two different basdine systems were examined. Table 2
shows the word error rates (WER) in percent achieved with these
basdline systems. The main difference between the two systemsis
the “acoustic resolution” of the models, which means that model
BASELINEL has a lower resolution using a maximum of 20
mixtures per triphone state, whereas for model BASELINE2 a
higher resolution with a maximum of 68 mixtures per triphone
state is used. According to the higher resolution of mode

BASELINEZ2 the word error rate is consderably lower compared
to modd basdlinel.

WER
BASELINE1 321
BASELINE2 25.7

Table 2. Recognition performance of two different basdine
model s without any normalization procedure.

In table 3 the results of supervised and unsupervised SRN with
the acoustic models BASELINE2 are shown. A reative im-
provement (column “rel. imp.” in table 3) of 4.3% respectively
2.7% can be achieved with the supervised or the unsupervised
procedure.

WER | rd.imp.
supervised SRN 24.6 4.3
unsupervised SRN 25.0 2.7

Table 3: Recognition performance of supervised and unsuper-
vised SRN and relative improvement compared to BASELINE2.

In table 4 the effects of applying the VTLN procedure to models
“basdlinel” is shown. A relative improvement of 11.2% can be
observed. It includes the results of supervised VTLN only, asin
preliminary experiments no significant differences were found
between supervised and unsupervised VTLN. In agreement with
previous experiments ([8]) an increase in rel ative improvement is

observable with higher speaking rates.
WER | rd.imp.
complete set 285 11.2
dow 284 8.3
medium 26.6 11.9
fast 320 12.6

Table 4: Recognition performance of supervised VTLN and
relative improvement compared to basdine 1 (BASELINE1-
VTLN). The performance on the complete test set is given as well
asthe performance for three different speech rate categories.

Table 5 contains the results after applying both VTLN and SRN.
Relative improvements are given compared to the use of
BASELINE1 modds and compared to the application of VTLN
aone (BASELINE1-VTLN). Word error rates as well as relative
improvements are given for the complete evauation set (row
“complete set”) and for each of three speech rate categories. For
details on splitting the speech materid into different speech rate
categories see [10].

WER | rdl.imp.to | rel. imp. to

VTLN basdlinel
complete set 27.3 4.2 15.0
dow 26.5 7.0 14.6
medium 25.9 2.6 14.2
fast 309 35 15.7

Table5: Recognition performance using a combination of VTLN
and SRN. The performance on the complete test set is given as
well asthe performance for three different speech rate categories.

All in dl aréative reduction in word error rate of 15% can be
achieved using a combination of VTLN and SRN (see last col-
umn of row “complete set” of table 5). Higher improvements are
achieved for both high and low spesking rates.



4. DISCUSSION

In this contribution a new version of SRN was presented, which is
based on adjudting the inter frame distance to the actua spesking
rate. The normalization factor is determined for each spurt of an
utterance and thus changes in the speaking rate can be captured.
Using linear interpolation of the origind features and a word
graph rescoring procedure leads to a moderate increase in the
computational load, compared to a full second recognition pass.
An overdl reduction of the word error rate of 2.7% (4.3%) was
achieved in unsupervised (supervised) mode. However, experi-
ments using an ideal criterion (minimum of WER) for optimizing
the normdlization factor showed, that a 17% reduction in WER is
possible on this task. Thus more investigations in finding a better
way of optimizing the normalization factor should be initiated.

In agreement with our monophone-based experiments [8], recent
triphone-based investigations show higher improvements in
recognition performance for increasing spesking rate.

In additiona experiments a combination of ML-based VTLN and
SRN was evaluated. Those experiments have shown that, apply-
ing SRN to VTLN-based features leads to an overdl decrease in
eror rate of 4.2% which is comparable to the gain observed when
applying SRN to unnormdized features. Higher improvements
can be achieved for “dow” and “fast” speech in comparison to
“medium” speech, for which the lowest error rate reductions
occurred.
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