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ABSTRACT
In this contribution a normalization procedure for automatic
speech recognition is introduced which aims at reducing speaking
rate specific variations of the features of the phonetic classes. A
“spurtwise” calculation of normalization factors allows to capture
changes of the speaking rate within one utterance. The cost-
saving implementation using linear interpolation of the original
features and a word graph rescoring procedure leads to a moder-
ate increase in computational load compared to the baseline sys-
tem without speech rate normalization.

In addition a two-step procedure which combines vocal tract
length normalization (VTLN) and speech rate normalization
(SRN) has been developed. Experiments showed, that applying
SRN to a VTLN-based recognition system leads to relative re-
duction in word error rate of 4.2%. This is comparable to the
decrease observed when using SRN on a system without VTLN.
All in all the combination of VTLN and SRN results in a 15%
reduction of word error rate compared to the baseline system.

1. INTRODUCTION
The speaker independent processing of spontaneously spoken
human-to-human dialogues is a special challenge to present
automatic speech recognition systems. Several factors contribute
to additional variations of speech signals in comparison to read
speech where the speaking mode is generally well defined. These
additional variations result in higher confusions between the
phonetic classes of the pattern matching process consequently to
an increase in word error rates of large vocabulary continuous
speech recognition (LVCSR) systems.

Among other factors like e.g. the use of pronunciation variants,
the speaking rate is a source of variation which can lead to a
considerable increase in error rate. Especially when people talk
faster than normal the performance of state of the art LVCSR
systems is often poor with error rates for fast speech being twice
to four times higher than normal (e.g. [1], [2], [3], [4], [5], [6]).
However, we observed a 30 to 40% increase in error rate on both
the Verbmobil evaluation and crossvalidation set 1996 ([7], [8]).

Several approaches have been suggested to improve recognition
of fast speech. Changes of hidden Markov model (HMM) state
transition probabilities ([1], [9] and [3]) as well as an adaptation
of a neural net phonetic probability estimator ([1], [9] ) proved to
be suitable methods. In earlier studies we showed the usefulness
of maximum aposteriori (MAP) estimation to adapt the acoustic
models (HMMs) to fast speech ([10]). In addition it was demon-
strated that the use of pronunciation variants and a maximum
likelihood based approach to vocal tract length normalization
(VTLN) were helpful for this purpose ([8]).

The basic idea of normalization procedures in general −in contrast
to adaptation− is to reduce the variations which have to be cap-
tured within the acoustic model of each phonetic class of the
recognizer. By reducing the variations of the feature vectors of the
phonetic classes, the distributions of the acoustic models in the
feature space will get “sharper”. Thus the normalization proce-
dure will reduce the overlap between the different “normalized”
phonetic classes and thus the confusion of the recognizer. As a
consequence the normalization procedure has to be applied during
parameter estimation to create “normalized” models as well as
during testing.

In previous studies ([8]) we were able to show that the reduction
of speaker specific variations as well as the reduction of phonetic
variations (use of pronunciation variants) can be helpful to reduce
the error rates for fast speech. We assume that the combination of
speaker specific, phonetic and speech rate specific variations is
especially adverse for fast speech. A normalization with respect to
one of the different sources of variation is advantageous for ex-
treme conditions (e.g. fast speech). In our experiments we showed
that VTLN is especially effective for fast speech, whereas the use
of pronunciation variants proved to have potential to reduce error
rates for both slow and fast speech.

In this study we will present a method of combining two different
approaches to normalize the feature vectors extracted from the
speech signal. Apart from the well known vocal tract length
normalization (see section 3.2) to reduce speaker specific varia-
tions, a modified approach to speech rate normalization (SRN) is
introduced (see section 3.1). Whereas the first approach aims at
reducing “secondary” (=not related to the speaking rate) varia-
tions the second approach results in a reduction of “primary”
(=speech rate specific) variations of the feature vectors. A special
emphasis is put on the combination of normalization (see section
3.3) with respect to both primary and secondary variations.

2. METHODS

2.1 Speech Rate Normalization (SRN)

Principle: The idea of speech rate normalization is introduced in
[11] and is called cepstrum length normalization (CLN). The
pronciple is to normalize the phone duration by stretching the
length of the utterance in order to match the “standard” lengths of
the phonetic units which are obtained from the training corpus. It
is based on the observations of [5] that the dynamic features (first
and second order derivatives of the spectral features) are most
affected by changes of the speaking rate.

Figure 1 illustrates the use of the same 10 ms frame grid for three
different speaking rates (slow, medium and fast). Especially the
calculation of the first and second order derivatives (delta- and
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deltadelta-features) is affected. Due to the lengthening or short-
ening of the phonetic units for the different speaking rates these
dynamic features can belong to different phonetic units. The
“phonetic distance” between the static features and the dynamic
features changes. Whereas all kinds of features of the central
frame of the phoneme “u:” (see figure 1) are assigned to this
phonetic unit (“u:”) for slow speech, the dynamic features are
assigned to neighboring units (“g”, “t” and “@”) for fast speech.
This results in essential differences between speech rate specific
versions of the phonetic units.

     g           u:           t           @   n          t        a:   k       m

   g    u:  t  @      n      t    a:  k    m aI    n     @     d

 g   u:  t   @  n  t     a:  k  m  aI n    @   d   a:  m   @    n  U
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Figure 1: Illustration of the calculation of static (spectrum) and
dynamic (delta and deltadelta) features for different speaking
rates for the first part of the utterance “guten Tag meine Damen
und Herren” (engl. “good afternoon ladies and gentlemen”) using
a constant frame grid. The transcription is given in SAMPA.

To overcome this problem the frame grid for calculating the
dynamic features has to be adjusted to the actual speaking rate.
This is illustrated in figure 2. A broader grid is used for slow
speech and a narrower one for fast speech. Thus the dynamic
features are calculated using similar parts of the speech signal and
the “phonetic distance” should remain constant for different
speaking rates.
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Figure 2: Illustration of the calculation of static (spectrum) and
dynamic (delta and deltadelta) features for different speaking
rates for the first part of the utterance “guten Tag meine Damen
und Herren” (engl. “good afternoon ladies and gentlemen”) using
a frame grid which is adjusted to the actual speaking rate. The
transcription is given in SAMPA.

Finding an optimal frame grid: Different algorithms for the
determination of  a new frame grid are evaluated in [11]. Whereas
a phone-by-phone stretching results in high improvements in
performance in supervised mode, this method completely fails in
unsupervised mode. Therefore the authors suggest to apply a
sentence-by-sentence procedure using an average factor ρmid:

ρ ρmid i
i

N

N
=

=
∑1

1

(1)

This mean factor is obtained by averaging all N phone-by-phone
normalization factors ρi which are calculated from a gamma
distribution estimated on the training material.

speech rate categories
per utterance

number of utterances on the
training material

“fast“ only 1194
“medium” only 5485
“slow” only 140
“medium” and “fast” 1576
“medium” and “slow” 1953
“slow” and “fast” 64
all categories 877
no valid spurt 66
sum 11355

Table 1: Intra-utterance variation of the speaking rate on the
training material of the Verbmobil evaluation 1996.

This sentence-by-sentence procedure cannot be used to model
changes of the speaking rate within one sentence. However, we
found that a considerable number of utterances within the training
material contains speech of different speech rate categories. Table
1 shows the distribution of spurts (spurt=between pause region,
see [12]) of different speech rate categories for the utterances of
the training material of the Verbmobil evaluation 1996. A sepa-
rate value of the speaking rate was determined for each spurt. For
60% (6820 sentences) of the training material the speaking rate
remains constant, whereas 40% of the sentences contain spurts of
different speech rate categories. For these sentences, it is impor-
tant to calculate different normalization factors for each spurt.
Therefore we decided to use a spurtwise average of the normali-
zation factor ρi. In addition preliminary experiments showed that
it is favorable to calculate this spurtwise factor by summing up
the expected and the actual lengths of the phones instead of cal-
culating an average quotient using equation 1.
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Calculating normalized features: After having determined the
new optimal frame grid, speech rate normalized features are
calculated. First, the static components on the new grid are inter-
polated using the static features of the original 10 ms grid. A
simple linear interpolation proved to be sufficient. Second, new
dynamic features are calculated using the static features of the
new grid.

For the estimation of speech rate normalized HMMs during
training the phonetic transcription of each spurt is used to deter-
mine the optimal normalization factor.

For normalizing the feature vectors during recognition both a
supervised and an unsupervised procedure were implemented.
Whereas in supervised mode the transcription is assumed to be
known, in unsupervised mode a phone recognizer is used to
determine an estimate srest,sp of the speaking rate of each spurt sp.
In addition the mean srest  of the spurtwise estimates on the train-
ing material is calculated to be able to determine approximate
values for the normalization factors of each spurt:

ρsum approx sp
est sp

est

sr

sr, ,
,= (3)



Recognition: Using both supervised or unsupervised SRN, the
speech rate normalized feature vectors are applied to perform a
second recognition pass using a lattice rescoring algorithm.

1. In the first recognition pass a word graph is produced on the
basis of unnormalized feature vectors and unnormalized
acoustic models. In unsupervised mode, a phone recognizer is
run simultaneously.

2. In a second pass, the speech rate normalized feature vectors
and the speech rate normalized HMMs are used to rescore the
word graph.

2.2 Vocal Tract Length Normalization (VTLN)

Principle: The VTLN is a well known approach to speaker nor-
malization, which aims at reducing speaker specific variations of
the speech signal caused by different lengths of the vocal tract.
Different approaches can be found in the literature which differ
both in the warping-functions used to transform the original
spectrum into the normalized spectrum as well as in the way of
finding an optimal value of the warping factor α which is com-
monly used to define the amount of warping (e.g. [13], [14], [15],
and [16]).

Warping procedure: For the training of speaker normalized
acoustic models we used a ML-based approach similar to [14].
The warping is performed using a piecewise linear function for
transforming the speaker specific into the normalized spectrum.

During recognition either supervised or unsupervised VTLN can
be performed. Whereas in supervised mode the transcription is
assumed to be known when choosing the optimal warping factor,
in unsupervised mode a Gaussian mixture model (GMM) is used
to choose the warping factor [15].

2.3 Combination of VTLN and SRN

The combination of VTLN and SRN is implemented in a two-
step procedure. First, an optimal warping factor is determined to
calculate speaker normalized feature vectors, these feature vectors
are then used to perform the speech rate normalization.

As described in section 3.1 the SRN procedure is realized in
supervised mode during training and as a second recognition pass
applying a word graph rescoring algorithm during recognition.
Instead of using unnormalized acoustic models and unnormalized
feature vectors, vocal tract length normalized models and feature
vectors are applied.

3. EXPERIMENTS AND RESULTS
Recognition experiments were conducted on the speech material
of the Verbmobil evaluation 1996. Decision tree based context
dependent HMMs (triphones) were estimated on the speech
material. Two different baseline systems were examined. Table 2
shows the word error rates (WER) in percent achieved with these
baseline systems. The main difference between the two systems is
the “acoustic resolution” of the models, which means that model
BASELINE1 has a lower resolution using a maximum of 20
mixtures per triphone state, whereas for model BASELINE2 a
higher resolution with a maximum of 68 mixtures per triphone
state is used. According to the higher resolution of model

BASELINE2 the word error rate is considerably lower compared
to model baseline1.

WER
BASELINE1 32.1
BASELINE2 25.7

Table 2: Recognition performance of two different baseline
models without any normalization procedure.

In table 3 the results of supervised and unsupervised SRN with
the acoustic models BASELINE2 are shown. A relative im-
provement (column “rel. imp.” in table 3) of 4.3% respectively
2.7% can be achieved with the supervised or the unsupervised
procedure.

WER rel. imp.
supervised SRN 24.6 4.3
unsupervised SRN 25.0 2.7

Table 3: Recognition performance of supervised and unsuper-
vised SRN and relative improvement compared to BASELINE2.

In table 4 the effects of applying the VTLN procedure to models
“baseline1” is shown. A relative improvement of 11.2% can be
observed. It includes the results of supervised VTLN only, as in
preliminary experiments no significant differences were found
between supervised and unsupervised VTLN. In agreement with
previous experiments ([8]) an increase in relative improvement is
observable with higher speaking rates.

WER rel. imp.
complete set 28.5 11.2
slow 28.4 8.3
medium 26.6 11.9
fast 32.0 12.6

Table 4: Recognition performance of supervised VTLN and
relative improvement compared to baseline 1 (BASELINE1-
VTLN). The performance on the complete test set is given as well
as the performance for three different speech rate categories.

Table 5 contains the results after applying both VTLN and SRN.
Relative improvements are given compared to the use of
BASELINE1 models and compared to the application of VTLN
alone (BASELINE1-VTLN). Word error rates as well as relative
improvements are given for the complete evaluation set (row
“complete set”) and for each of three speech rate categories. For
details on splitting the speech material into different speech rate
categories see [10].

WER rel. imp. to
VTLN

rel. imp. to
baseline1

complete set 27.3 4.2 15.0
slow 26.5 7.0 14.6
medium 25.9 2.6 14.2
fast 30.9 3.5 15.7

Table 5: Recognition performance using a combination of VTLN
and SRN. The performance on the complete test set is given as
well as the performance for three different speech rate categories.

All in all a relative reduction in word error rate of 15% can be
achieved using a combination of VTLN and SRN (see last col-
umn of row “complete set” of table 5). Higher improvements are
achieved for both high and low speaking rates.



4. DISCUSSION
In this contribution a new version of SRN was presented, which is
based on adjusting the inter frame distance to the actual speaking
rate. The normalization factor is determined for each spurt of an
utterance and thus changes in the speaking rate can be captured.
Using linear interpolation of the original features and a word
graph rescoring procedure leads to a moderate increase in the
computational load, compared to a full second recognition pass.
An overall reduction of the word error rate of 2.7% (4.3%) was
achieved in unsupervised (supervised) mode. However, experi-
ments using an ideal criterion (minimum of WER) for optimizing
the normalization factor showed, that a 17% reduction in WER is
possible on this task. Thus more investigations in finding a better
way of optimizing the normalization factor should be initiated.

In agreement with our monophone-based experiments [8], recent
triphone-based investigations show higher improvements in
recognition performance for increasing speaking rate.

In additional experiments a combination of ML-based VTLN and
SRN was evaluated. Those experiments have shown that, apply-
ing SRN to VTLN-based features leads to an overall decrease in
error rate of 4.2% which is comparable to the gain observed when
applying SRN to unnormalized features. Higher improvements
can be achieved for “slow” and “fast” speech in comparison to
“medium” speech, for which the lowest error rate reductions
occurred.
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