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Abstract
A novel noise robust voice activity detection approach is 
introduced. The novelty of the method that it uses noise 
suppressed spectrum of the input signal for spectral entropy 
calculation. As a result excellent end-pointing performance is 
observed based on predefined global entropy threshold and 
time constraints. The effect of frame dropping controlled by 
the proposed algorithm was investigated on the accuracy of 
automatic speech recognition. The experiments were 
performed on Hungarian publicly available noisy and normal 
telephony speech databases.  The relative improvement due to 
dropping of non-speech frames was positive in all test 
configurations with a maximum of 29,5%. Besides, in 
average more than 50% of the frames were dropped. 

1. Introduction 
The need for actually noise robust speech endpoint detection 
is increasingly growing. Perhaps, the most demanding 
application is Noise Robust Automatic Speech Recognition 
(NRASR). A reliable endpoint detector can straightforwardly 
reduce the number of recognition errors by discarding non-
speech – but possibly high-energy – sound events of the noisy 
environment. A good voice activity detector, furthermore, is 
not only able to improve the accuracy and speed of a speech 
recognition system, but also can boost the efficiency of 
Wiener-filter based noise suppression. I.e. many of the 
NRASR systems use Wiener-filter technology, like the ETSI 
ADSR (Advanced Distributed Speech Recognition) standard 
[1] that requires distinguishing speech and non-speech 
segments.  

In the last few decades several methods have been 
developed aiming at noise robust speech end pointing or 
voice activity detection in adverse (highly noisy) conditions. 
According to [2], the methods can be categorized into two 
classes. One of them is based on thresholds [2-3]. Generally, 
this kind of method first extracts certain acoustic features for 
each frame of the input signal and then compares these values 
of features with preset thresholds to classify each frame. The 
other one is a pattern-matching method [4] that needs the 
estimation of the model parameters both for speech and noise 
signals. The detection process is similar to a recognition 
process. Compared with the pattern matching method, the 
thresholds-based method needs neither much training data nor 
model training therefore it is generally simpler and faster. 
When using voice activity detection in a front-end, there is, 
however, no option for the pattern matching method. 

A favourable approach amongst the threshold-based 
methods is where short-time spectral entropy is used as 
acoustic feature – rather than energy [2-3], [5]. Since the 
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y is a metric of uncertainty for random variables, the 
y of speech segments is obviously different from that of 
ise signals because of the inherent characteristics of 
 spectrum. Though entropy based methods usually 
forms energy-based approaches especially under noisy 
ions and though many papers present improvements of 
y based endpoint detection methods they all suffer from 
ation of accuracy if SNR (Signal-to-Noise Ratio) falls 

 a limit. This is because of the “flattening” of the 
y curve as the energy of the noise  - even if it is white - 
ng. Therefore [6] tries to combine the energy and 
y which is a desirable approach, but cannot solve the 
m for various kinds of noises. 
, short-time entropy is a preferable acoustic feature 
constructing a noise robust speech endpoint detection, 
 is not effective enough in the presence of high-
exity noises (narrow band, harmonic noises, 
ound music, etc.).  
r idea was based on the behavior of the human 

ry system to suppress at least the relatively slow 
g noises. Therefore, after [7] we applied a minimum 
l sub band energy based noise estimation and 
ssion stage before the entropy calculation. Essentially 
timated noise spectrum is used to whiten the signal 
m. As a result we observed an outstanding voice 

y detection performance.  
e efficiency of the developed VAD (Voice Activity 
or) algorithm was measured indirectly by speech 
ition test on noisy and normal telephony speech 
ses in various front-end configurations. 

. Entropy of the magnitude spectrum 
at low SNR the magnitude spectrum shows the speech 
s more organized than the noisy ones. The assumption is 
e signal spectrum is more organized during speech 

nts than during noise segments. The “measure of 
zation” of a discrete magnitude spectrum can be 
ed similarly as the entropy of an information source by 

on [8]. 
e entropy of an information source is defined as: 

H(S) = - 
i = 1

N
 P( s(i) ) log2( P(s(i)) ) (1) 

 N is the number of the symbols, s(i) is the symbol i., 
i) is the a-posteriori probability of the symbol i. The 
y can be defined in the spectral energy domain as: 

,t0)|2) = -
 = 1

 {P( |Y( ,t0)|2) · log2 ( P(|Y( ,t0)|2))} (2) 



Where “spectral probabilities” are calculated as: 

 P( |Y( 0,t0)|2)  =  
 |Y( 0,t0)|2

 = 1
   |Y( ,t0)|2

  (3) 

|Y( ,t0)|2 is the spectral energy of the frame t0, and 
P(|Y( 0,t0)|2) is the probability of the frequency band 0 of 
frame t0. [3] 

The entropy will be maximal, if the signal is white noise, 
Hmax=log( ) and minimal if  it is a sinusoid Hmin=0.

So the range of this measure is bounded and spectral 
entropy does not depend on the energy level of the frame. 
This makes entropy particularly suitable for threshold-based 
voice activity detection. 

In noise, however, there are difficulties that prevent the 
direct application of spectral entropy in a VAD. First of all, 
when the level of the noise is higher than the level of the 
speech the entropy curve becomes hardly suitable for 
threshold-based decisions (see Figure 1.). The situation is 
even worse if the noise is not white and consequently it shows 
some kind of organization. In this cases [3] proposes to divide 
the spectrum of each frame by the average spectrum 
computed over T frames (4) and so whiten the spectrum, 
while [2] suggests a modified entropy calculation formula not 
detailed here.  

( ,t0) = 
 |Y( ,t0)|

1
T

i=1

T
  |Y( ,t)| 

  (4) 

We experienced that the application of (4) whitens the 
speech spectrum, as well, and so it does not help significantly. 

Nevertheless, we found that none of these methods was 
able to compensate the effect of complex noises (noises 
having slow varying spectral harmonics). This may severely 
influence the accuracy of an entropy based VAD under real-
life noisy conditions. (Note that the spectral entropy of a 
simple sine wave is maximal!). So we looked for a solution 
that is insensitive for relatively constant narrow band noises. 

Our guess was that dividing by the spectrum of an 
estimated noise might result in a better VAD performance and 
fulfill the requirements mentioned previously. 

3. Noise Estimation and Suppression 
After [7] we implemented an algorithm for the estimation of 
noise. The spectral minimum is computed over a set of prior 
T smoothed frames. The assumption is that the speech has a 
non-stationary nature and so the energy of speech sometimes 
falls to zero in all frequencies, though not simultaneously. 
Only the energy of noise is relatively constant in a given 
frequency. Therefore the minima in each spectral bin over a 
sufficiently long interval can give an estimation of the noise, 
if the spectral changes of the noise are slower than that of the 
speech. 

0

2.3
2.6
2.9
3.2
3.5
3.8
4.1
4.4
4.7

E
nt

ro
py

0
-0.1

0

0.1

So the
minim
as foll

 

wh

It 
substit
resulti
better 
In this
be wh
Theref
empha
variou
harmo
modifi
logarit

Ho
e.g., th
estima

As
the spe
failure

Th
Pattern
reduci
noise 
future,
bin-by
and pa

noise(

t

Th
experi
0.2 0.4 0.6 0.8 1 1.2 1.4

Entropy as function of SNR [dB]

Time [sec]

 15.0 dB
  5.0 dB
  0.0 dB
 -5.0 dB

0.2 0.4 0.6 0.8 1 1.2 1.4

The original waveform (SNR = 29.6 dB)
and manual speech detection

Time [sec]

Figure  1. Entropy under various SNR

 spectrum of the noise is estimated by finding the 
um of each frequency band  (or FFT bin, in practice) 
ows:  

Ynoise( ,t0) = min
t = t

0
-T... t

0

 { Ysignal( ,t) } (5)

ere Ysignal( ,t) is the magnitude spectrum of the signal. 

was found that if the estimated noise spectrum (5) was 
uted into (4) instead of the average spectrum the 
ng noise-suppressed spectrum showed considerably 
basis for entropy calculation than the original spectrum. 
 way the spectrum of a color noise during speech can 
itened without whitening the speech spectrum itself. 
ore the entropy curve of a signal is much more 
sized during noisy speech segments than during 
s noise segments. In addition, any relatively constant 
nic noises are suppressed because the described 
cation of (4) means spectral subtraction of noise in the 
hmic domain.  
wever, if the spectrum of the noise changes suddenly 
e energy of some frequency band rises abruptly the 

tor will follow this changing with considerable latency. 
 a result a part of the noise to be suppressed resides in 
ctrum potentially resulting in a voice activity detection 
. 
erefore we extended the noise estimation as follows. 
s from the future and the past are also used for 

ng the effects of sudden changes. Two estimations of 
spectrum are computed from the past and from the 
 respectively. The actual noise spectrum is obtained 
-bin through choosing the larger value among future 
st estimated noise spectrum bin.  

,t0) = MAX [ 

min
 = t0-T1... t0

 { Ysignal( ,t) }, min
t = t0...t0+T2

 { Ysignal( ,t) } ] (6) 

is modification causes a latency of T2 (250 ms in our 
ments), which is allowable in real-time ASR.  



4. Overview of the NSSE-VAD algorithm  
In the following we briefly summarize the developed voice 
activity detection algorithm. For convenience it will be called 
NSSE-VAD (Noise-Suppressed Spectral Entropy-based 
Voice Activity Detection) in the rest of this paper.  

Step 1: STFT 
Before the 128-bin FFT calculation a 32 ms long 31.2% 
overlapped Hanning-window was applied. To obtain the 
smoothed spectrum a two-dimensional FIR filter (S) was used 
on the FFT output. The algorithm gave better result, if 
smoothing in both frequency and time domain was used.  

Ysmoothed( 0,t0) =
=-2

2

t=-2

2
 Yoriginal( 0+ ,t0+t)·S( +3,t+3)  (7) 

Where Yoriginal( ,t) is the magnitude spectrum as the output of  
the FFT of the t-th frame of the signal, and S(i,j) is the element 
of i-th row and j-th column of the smoothing matrix S.
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 (8) 

Step 2: Noise Estimation and Subtraction 
To improve the robustness of spectral entropy against various 
noises we use the previously described noise estimation 
algorithm: (6) is applied on Ysmoothed (with T1 = 750ms). Then 
the smoothed spectrum is divided by the estimated noise 
spectrum. 

 Ynoise-suppressed = Ysmoothed / noise              (9) 

Step 3: Entropy calculation 
The spectral entropy is computed on the noise-suppressed 
spectrum applying (2). 

Step 4: Classification 
We used a global threshold (91% of the maximum entropy in 
our experiments). If the computed entropy of the actual frame 
was less than the threshold, the frame was considered as 
speech, else as noise. 

Step 5: Final speech/non-speech decisions 
In order to extend voice activity detection to endpoint 
detection – if required – a final layer is applied to make voice 
activity detection regions coherent. This operation is based on 
simple time constraints. For example, as speech contains 
silence, too, the algorithm is insensitive to short silences (~0.1 
sec) between two speech regions. So, in these cases the 
speech/non-speech output of the classification is judged over. 

5. Evaluation
Various speech recognition tests were carried out in order to 
measure the effect of the NSSE-VAD in term of recognition 
error rate improvement. 
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atabases 

e used two test corpuses, a normal and a noisy one. The 
ne is called BESZTEL or Normal DB and the test set 
ts of about 6000 utterances – typically command words 
h were not marked as noisy at the annotation process. 
ther database was designed especially for NRASR 
es therefore the recordings contained various 
nmental noises during the speech. This database is 
TESZTEL [9] or Noisy DB and the size of the test set 
bout 1200 and the utterances were typically 2 to 4 
e length words. A limitation of this database is that 
of the recordings are AGC (Automatic Gain Control) 
ed.  
e training database (MTBA [10]) was a normal 
one speech database therefore the test condition in case 
ZTEL can be considered as well-matched while testing 

SZTEL as highly mismatched due to noises.    

ecognition tasks 

iddle vocabulary speech recognition tests were 
med on both databases using explicit endpoint-detection 
ot. The vocabulary size was about 1000 in case of 
l test and about 250 at the noisy test. There was implicit 
int detection at the recognition phase due to a silent 
. 

valuation methodology 

series of experiments were run with three different 
nd configurations augmented with the NSSE-VAD. 
lative improvement achieved by our detector through 
eech frame dropping was measured by four recognition 
n each turn. In one half of the experiments standard 
s were used (39 dimensional feature vectors), in the 

half absolute energy was suppressed (38 dimensional 
s).  
e effect of NSSE-VAD was first investigated with a 
 MFCC front-end. Then this MFCC front-end was 
ed with Blind Equalization (MFCC+BEQ). Finally the 
standard ADSR front-end was used in the experiments. 
latter case the standard’s VAD was evaluated, too. 

esults

1 shows the reference recognition error rates of three 
nds as a reference.  Table 2 a) presents the absolute 
ates when non-speech frame dropping was switched on. 
fect of NSSE-VAD and ADSR-VAD is emphasized in 
2 b) where the relative improvements caused by the 

it end pointing are displayed. Note, that while the 
-VAD dropped 3,5% and 24,9% of frames at the Noisy 
e Normal DB, respectively, the dropping rate of NSSE-

as 60% and 52,6% on the two databases accordingly. 

able 1, Reference word error rates (WER, %) of the 
front-ends without VAD  

With energy  Absolute energy 
suppressed 

Normal Noisy  Normal Noisy 

 5,23 51,24  6,26 21,20 
4,78 45,61  5,26 27,33 

EQ 4,76 43,60  5,43 19,97 
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Figure 3. Illustration of NSSE-VAD operation 
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able 2, a) Word error rates (WER, %) of different 
front-ends with the two end pointing methods 

With energy  Absolute energy 
suppressed Front- 

end 
Normal Noisy Normal Noisy 

ADSR 5,21 51,07  6,26 21,20 
ADSR 5,11 36,14  5,86 20,54 

CC 4,66 35,51  5,08 22,77 
CC + BEQ 4,70 33,83  5,23 18,65 

able 2, b) Relative improvements (in %) due to end-
pointing  

With energy   Absolute energy 
suppressed Front- 

end 
Normal Noisy Avg.  Normal Noisy Avg. 

ADSR +0,38 +0,33 +0,36  0,00 0,00 0,00 
ADSR +2,29 +29,47 +15,88  +6,39 +3,11 +4,75

CC +2,51 +22,14 +12,33  +3,42 +16,68 +10,05
CC + BEQ +1,26 +22,41 +11,83  +3,68 +6,61 +5,15

6. Conclusions 
vel threshold-based noise robust VAD has been 
ced. The novelty of the approach is the noise 
ssion stage before entropy calculation. This stage has a 
whitening effect proven extremely useful for this type 
ech detection. As the speech recognition results on 
rian databases show the relative improvements 
ed by the proposed VAD algorithm through end 
g are in the range of 1,26% – 29,47%, and the average 
ements are 4,75% – 15,88%. Which are much higher 
 the case of ADSR-VAD (0% – 0,38%). What is more, 
ple MFCC front-end along with the proposed NSSE-

performs nearly as well as the ADSR front-end in the 
 mismatched, energy-suppressed condition and 
cantly better in all other test situation. Besides the 
VAD speeds up the recognition process remarkably by 
ive (more than 50% in our experiments) frame 
ng rate. 
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