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Abstract
In this paper we present a method for defining the question set
for the induction of acoustic phonetic decision trees. The method
is data driven resulting in a continuous feature space in contrast
to the usual categorical one. We apply the features to a multi-
lingual speech recognition task, outperforming consistently the
standard method using IPA-based characteristics. An extension
to cross-lingual applications together with first preliminary results
are given too.

1. Introduction
A central question in the design of an automatic speech recognition
(ASR) system is the definition of proper acoustic phonetic entities.
This question gets even more important when trying to share the
acoustic features space among different languages, or to share it
with a third, yet unseen language.
The common state of the art approach for defining the acoustic
models is the use of a phonetic decision tree. Such a tree con-
stitutes a functional mapping from a feature to a model domain.
Therefore, defining for all phonetic circumstances of the input do-
main a proper hidden Markov model (HMM) in the output domain.
One crucial topic of this mapping function is the definition of the
input domain. A standard approach is the use of phonetic features
assigned to the phonemes. This usually works quite well, but ex-
hibits the problem that the design depends on phonemical knowl-
edge. In case of a multi- or even cross-lingual system design this
might be a severe problem. Not only knowledge for one but for
all languages is needed. Additionally, this knowledge should be
comparative. This is in strong contrast to the information found in
phonetic dictionaries and textbooks assigned to one specific lan-
guage. Information and transcriptions given there usually follow
the principle of phonological contrast [1] using a broad transcrip-
tion. This leads to the problem that equal phonetic features may
be assigned to clearly distinguishable phonemes of different lan-
guages.
To cope with these problems [2] suggests a feature construction
by bottom-up clustering of the acoustic information given by the
HMMs seen in a database. Constructing phonetic broad classes
based on a phoneme confusion matrix is proposed in [3].
In [4] and [5] local similarities between the probability density
functions of HMMs are identified, and used for constituting pho-
netic features. For identifying the similarities, advantage is taken
of the prototype character of the mixture components forming
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Figure 1: Local codebook similarities.

bability density functions (PDF) of semicontinuous HMMs
M).

work we extend this concept of so called ”local codebook
s” (LCB) to a method for constructing continuous phonetic
s in a low dimensional feature space. We also work out the
tual base for their use in cross-lingual tasks and give simu-

results.
per is organized as follows. In section 2 continuous LCB-
s are presented, followed by section 3 extending the concept
s-lingual use. Section 4 discusses the question generation.
ion 5 a system overview is given followed by section 6 with
t set up. Test results are presented in section 7 and the con-
ns are given in section 8.

. Continuous local codebook features
asic idea behind LCB-features [4], [5] is that similar pho-
roperties should be reflected by similar shaped probability

y functions (PDF) on a local scale. In Figure 1, this idea is
ed. It shows the assumed probability density functions of the
mes ’a’, ’e’, and ’d’, with two locally similar regions. The
rities might be caused by common articulation properties of
onemes as e.g. ’voiced’ or ’open’. Constructing features
on this idea means to identify such similarities in the PDFs
Ms. In case SCHMMs this can be efficiently done by com-
the prototype weights of the PDF’s mixture components.
e sake of simplicity, we assume during derivation of the
d, that the beforehand trained incontextual HMMs have only
te and refer to only one codebook. In the following, this al-

o leave out the state and codebook indices. Hence, the PDF



Figure 2: Locality and neighborhood. The picture shows 2 locali-
ties ’x’ with neighborhood L̃ = 5, .

of one SCHMM is given as

Gmix(i) =

LX
l=1

cil · G (µl, ·) i ∈ {1, ..., I}, (1)

with L the codebook size and i the HMM index. G(µl, ·) names
the lth mixture component with mean vector µl. For the local
search, we define a locality just by a mixture component, and
therefore by every index l̃ out of the L mixture components. We
also define the neighborhood of l̃ as the L̃ mixture components
closest to the locality l̃.
Figure 2 depicts the concept for a two dimensional case. It shows
a part of a codebook with class regions and the mean values (black
dots). Two localities are accentuated by marking the correspond-
ing means by crosses instead of dots. The neighborhood is set to
L̃ = 5, and the equivalent regions with the five closest mean val-
ues to the localities are drawn hatched.
For a formal derivation of the method, we define the distance
d(l̃, l) between the mixture components by equation (2)

d(l̃, l) = ‖µl̃ − µl‖ l, l̃ ∈ {1, ..., L}. (2)

Identifying for each locality l̃ the L̃ closest neighbors is done by
evaluating equation 2 for all l and l̃. As result we get for each
locality l̃ an index set Sl̃ naming the indices of the L̃ closest mix-
ture components of locality l̃. Using min(n) to signify the ”nth

smallest value of” we can express Sl̃ as

Sl̃ =


l | arg min

1≤l≤L

(n)
d(l̃, l), n ∈

n
1, ..., L̃

off
, (3)

where l̃ ∈ {1, ..., L}. Applying these index sets to the PDF of
each HMM i by summing up the corresponding weights of the
codebook mixture components, we get local, cumulative probabil-
ity masses m∗

li. Grouping all m∗
li together, we derive matrix

M
∗

L̃
= [m∗

li]LxI
. (4)

In M∗

L̃
the subindex L̃ names the neighborhood size used to con-

struct the features.
Note that each of the matrix’s column name one incontextual
HMM, and each row stands for one locality, centered around one
mixture component G(µl, ·), in the associated probability space.
Therefore, local similarities between different phonemes are re-
flected by similar cumulative probability masses m∗

li in one row of

M∗

L̃
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e also mention, that for L̃ = 1 the matrix M∗

L̃
reduces just

B-matrix, i.e. the original mixture weights of the underlying
s.
M∗

L̃
can already be used for training an acoustic-phonetic

n tree. Each column of M∗

L̃
constitutes a vector in the def-

space of the tree. Different properties between phonemes
flected by different distance relations between the column
s of M∗

L̃
.

blem associated with the use of M∗

L̃
is its dimensionality.

e of SCHMMs a codebook usually consists of several hun-
ernels. In our case we use L = 256, fixing also the col-
ngth of M∗

L̃
and therefore the dimension of the input space.

s being cumbersome to handle in practice, the high dimen-
also in contrast to what should be necessary to describe

acoustic-phonetic properties respective differences between
mes. When working with standard IPA-features, feature vec-
nsist typically of less than 10 components. We therefore as-

that the underlying dimensionality of the problem should be
10.
e with the request of a reduced dimensionality some kind
ension reductions is needed. The first choice would be a

ar value decomposition (SVD) of matrix M∗

L̃
and its subse-

reduction by projecting its entries to the space spanned by
ngest principal components. Unfortunately, dimension re-

n by SVD distorts the transformed space. That is, it does not
ve distance relations between transformed vectors, actually
tuting the information content of M∗

L̃
.

ore, for dimension reduction simultaneously trying to pre-
the relative distances between elements we propose a non-
multidimensional scaling technique, the Sammon mapping
he original Sammon mapping is defined as a projection of a
points from a high dimensional into a low dimensional space
f dimension 2), under the criterion of maintaining the mu-
lative distance relationships between the points.
ective function to minimize, the cumulative error E

E =
1Pn−1

i=1

Pn

j=i+1 δ∗ij

n−1X
i=1

nX
j=i+1

(δ∗ij − δij)
2

δ∗ij
(5)

en the element distances δ∗
ij in the original space and the cor-

ding element distances δij in the lower dimensional, trans-
d space is defined.
ce δ∗ij is taken as the euclidean distances between the vectors
d m∗

j . The summation runs over all vectors, i.e. n = I . A
ponding definition applies for δij in the transformed space.
izing E with respect to the transformed vectors mj is done
dient descend

E
(τ+1) = E

(τ) − µ∇mk
E

(τ)
, k = {1, ..., I}. (6)

eral, dimension reduction can not be done without introduc-
certain amount of residual mapping error. The most com-
used criterion to measure this error is Kruskal’s stress:

S =

vuut
Pn−1

i=1

Pn

j=i+1(δ
∗
ij − δij)

2

Pn−1
i=1

Pn

j=i+1 δ2
ij

. (7)

ion 4 we give typical values of S.
tch better the needs of the subsequent decision tree construc-
e extended the classical Sammon mapping slightly. First,
venience, we center the transformed vectors around the ori-
subtracting their mean after each gradient descend iteration.

d, the final vector space ML̃ is aligned to its principal com-
ts. This operation constitutes just a change of the coordinate



system. Neither the first nor the second operation change the dis-
tance properties between the elements ML̃, and therefore do not
affect the mapping.
At this point we have to emphasize that the constructed features
are ordered, continuous and not categorical as the commonly used
IPA-features or phonetic broad classes. Therefore we name them
”continuous LCB-features”.
Continuous LCB-features constitute a major change in construct-
ing an acoustic-phonetic decision tree. Instead of partitioning the
input space of the decision tree according to categorical questions
as e.g. ”Is the left context of the model a vowel?”, we now parti-
tion the input space by continuously shifting hyperplanes parallel
to the axes through it. I.e. a typical question is of the form: ”Is the
third component of the model’s feature less than −1.795?”.

3. Cross-lingual continuous LCB-features
In case of a cross-lingual application we try to regress models for
a new language by the regression tree constructed for some other
languages. In contrast to model regression using IPA-features, we
need a small development database of the new language to derive
LCB-features from. Basically this is the same process as described
in section 2. Nevertheless, it is crucial that the resulting features
are consistent with the LCB-features used to construct the original
decision tree.
We start by training incontextual SCHMM for the new language
using the multi-lingual codebook of the other languages. By this
the resulting new matrix N∗

L̃
is consistent with the original matrix

M∗

L̃
. Directly applying Sammon’s mapping on N∗

L̃
is not possible.

This is due to the fact, that the resulting transformation depends
on its initialization and on the data points to transform. Just run-
ning the Sammon mapping would correctly preserve the distance
relations between the entries in the new matrix N∗

L̃
, but would be

completely inconsistent with the original features ML̃.
To overcome the problem we propose a constraint Sammon map-
ping fitting the new data points given by N∗

L̃
into the original,

transformed map ML̃. That is, we run a Sammon mapping for
the compound features

ˆ
M∗

L̃
N∗

L̃

˜
initializing the process randomly

for the N∗

L̃
and by the originally transformed features ML̃ for

the M∗

L̃
. Consequently, the low dimensional result space contains

right from the beginning the correctly placed points ML̃. Gradi-
ent descend is performed only respective the new feature vectors
NL̃, but with equation 5 referring to all feature vectors. I.e., we fit
the new feature vectors ni into the old, fixed vectors mi, trying to
preserve the mutual distances within the new features and between
the new and the old features.

4. Question generation
For model definition we use a binary decision tree [7] splitting
nodes according to a binary question and an entropy based impu-
rity measure. In the classical approach, a binary question is com-
posed out of phonetic attribute values assigned to the SAMPA rep-
resentations of the phonemes we use in our system. The attribute
values are taken from corresponding IPA descriptions [1] of the
phonemes.
In case of LCB-features, we started by training incontextual mod-
els (3 states) for each language. This is followed by extracting the
features as described in section 2. The features are based on com-
mon multi-lingual mel-cepstrum coefficients (MFCC) codebooks.
The neighborhood is varied between L̃ = 1 and L̃ = 36. With a
codebook size of 256 and 122 phonemes, 47 for German, 44 for
English and 31 for Spanish, the intermediate matrix M∗

L̃
is of di-

mension 256x122. Sammon mapping is performed to dimension
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Table 1: Example of LCB-features for 4 phonemes.

Phoneme

2: 2.177 -0.786 -3.199 2.566 ...
6 1.680 0.447 2.749 -2.175 ...
9 -2.066 -1.169 2.562 1.833 ...
a: 1.609 -2.587 -1.795 1.721 ...

on by the decision tree.
ying is done without a-priori distinction between different
hones. That is, we build one tree for each state positions but
ree performs the model definition over the whole phoneme

5. System overview
e a SCHMM system computing every 10ms twelve mean
el-cepstrum coefficients (MFCC) (and the energy) over a
frame. First and second order differential MFCCs plus the
ntial energy are employed. For each sub-feature, a code-
s constructed consisting of 256 and 32 (delta energy) Gaus-
ixtures, respectively. Common multi-lingual codebooks are

tic phonetic modelling is done by demiphones, [8]. They
thought of as triphones which are cut in the middle giving
nd a right demiphone.

ding to the demiphone concept, LCB-features are con-
d on the last state of the left and the first state of the right
extual demiphones. This leads to two independent features
, one for the left and onefor the right demiphones.

6. Test set up
ng and testing the systems are performed using SpeechDat-
ed telephone databases. Four languages are used. For Span-
), English (E), German (G) a 1000 speaker training and a
eaker test part is extracted. Slovenian (V) serves as target
ge for the cross-lingual experiments. To get a Slovenian
e recognition rate also a pure Slovenian system is build us-
00 speaker training and a 100 speaker test set.
ining, we use 7500 − 8100 phonetically-rich sentences per
ge. Testing is done using phonetically-rich words mixed
pplication words. For Spanish, German and English approx.
and for Slovenian 614 phrases apply. The resulting gram-
just word lists, consist of approx. 1300 words for Spanish,
n and English and 372 words for Slovenian.
e cross-lingual regression of multi-lingual models for a
ian system a subset of 200 speaker, 1740 phrases, out of
0 speaker training set is used. First, context independent
ian models are trained. In a second step LCB-features are

ucted. With these features the multi-lingual decision tree is
d and models are regressed.

7. Tests and test results
e compare multi-lingual German, English, Spanish models

d by common IPA-features with corresponding multi-lingual
s defined by continuous LCB-features. Table 2 presents the
ponding word error rates (WER). In case of LCB-features
d neighborhood sizes L̃ is given too.



Table 2: Multi-lingual test results, WER [%].

L̃ S G E

IPA - 7.41 9.48 27.96
LCB 1 6.13 8.81 27.53
LCB 6 6.77 8.96 27.13
LCB 12 6.35 9.19 26.98
LCB 18 6.81 8.78 26.82
LCB 24 6.58 8.89 26.86
LCB 30 6.62 9.19 26.98
LCB 36 6.77 8.78 27.13

Table 2 shows that IPA-features are always outperformed by LCB-
features. No clear conclusion respective the optimal neighborhood
size can be drawn. Variations in the WER due to a different choice
of L̃ seem to be of statistical nature and are within the error bars
of approx. 1.3% − 2.4%. We note that some of the best results
are already achieved with a neighborhood of L̃ = 1. That is, just
using the dimension reduced original B-matrix as definition space
for the decision tree performs very well.
The next test series focus on the cross-lingual use of already avail-
able models. Multi-lingual models trained on Spanish, English
and German are used as source models for a recognition task in
Slovenian. We start by building two Slovenian baseline systems.
The first system, IPAmono, is a pure Slovenian one. Model def-
inition is done using standard IPA-features for decision tree con-
struction. The system named LCBmono is the mono-lingual LCB-
feature counterpart. Table 3 shows that for both systems the recog-

Table 3: Slovenian mono-lingual test results, WER [%].

IPAmono LCBmono

WER 9.61 9.60

nition rates are almost equal.
At this point we need to say that the LCBmono system is not com-
pletely mono-lingual. For building the system we actually used the
multi-lingual codebook used for constructing the Spanish, English,
German models. In other words, the influence of the codebook
mismatch is negligible. Furthermore, to get a more comparable
setup to the subsequent cross-lingual tests, also the LCB-features
are build with the multi-lingual codebook. That is, the Slovenian
monophone models needed to extract the features space are trained
on this codebook. Finally, also with respect to the cross-lingual
case, we used 200 speakers out of the 900 speakers of the Slove-
nian training set to build the LCB-features. This was done in order
to resembles a cross-lingual task, by assuming a small database for
the target language.
In summary we conclude that also for Slovenian the LCB-feature
approach works very well. The harm of constructing the LCB-
features with a reduced database using the multi- instead of a
mono-lingual Slovenian codebook barely effects the performance
of the ASR system.
Finally we present preliminary results for the cross-lingual step.
As baseline an IPA-feature based model set, IPAcross is con-
structed by regressing Slovenian IPA-features through an usual
IPA-base multi-lingual decision tree. For the LCB-case LCB-
features are build according to the procedure described in sec-
tion 3. For construction we use the same 200 speaker subset of
the Slovenian database as used for the LCBmono system. Table 4
shows the disappointing results of this test. On the one hand side
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able 4: Slovenian cross-lingual test results, WER [%].

IPAcross LCB6 LCB12 LCB18

WER 46.09 84.20 85.99 76.71

ve the IPAcross WER benchmark being with 46.09% in a
also reported by other groups [9]. On the other hand we get

igh error rates using the LCB-approach.
sults from table 4 are in strong contrast to the good find-

or LCB-features in the mono- and multi-lingual cases. At
ment it is not clear what causes this bad behavior. A possi-

planation might be some kind of database missmatch caus-
offset between the original Spanish, English, German and
ss-lingual Slovenian LCB-features. Further investigation is
to clarify this question.

8. Summary and Conclusions
work we provide a framework for the data-driven con-

on of so called continuous LCB-features. We showed their
ness for model definition in several tasks. For the multi-
l Spanish, English, German and the mono-lingual Slovenian

odel definition based on LCB-features outperformed con-
ly the standard, IPA-based approach.
o provided the technical base for cross-lingual feature con-
on and some initial results. Further research is necessary to
tand and overcome the problems in the final cross-lingual
regression.
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