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Abstract 
This paper describes a speaker diarization system in 2007 
NIST Rich Transcription (RT07) Meeting Recognition 
Evaluation for the task of Multiple Distant Microphone (MDM) 
in meeting room scenarios. The system includes three major 
modules: data preparation, initial speaker clustering and 
cluster purification/merging. The data preparation consists of 
the raw data Wiener filtering and beamforming, Time 
Difference of Arrival estimate and speech activity detection. 
Based on the initial processed data, two-stage histogram 
quantization has been used to perform the initial speaker 
clustering. A modified purification strategy via high-order 
GMM clustering method is proposed. BIC criterion is applied 
for cluster merging.  The system achieves a competitive 
overall DER of 8.31% for RT07 MDM speaker diarization 
task.  
Index Terms: Multiple Distant Microphone, speaker 
diarization, time difference of arrive, speech activity detection, 
speaker clustering 

1. Introduction 
Speaker diarization is one of the tasks in the NIST Rich 
Transcription (RT) Meeting Recognition Evaluation. It is to 
automatically find the segments of time within a meeting in 
which each meeting participant is talking, a task to detect Who 
Spoke When [1]. This requires for marking the start and end 
times of every speech segment with a speaker identity, from a 
continuous audio recording of a meeting. In recent years, there 
has been extensive research on the speaker diarization systems 
of the Multiple Distant Microphones (MDM) conditions in 
meeting room scenario [2-6]. 

A common approach for the MDM task is first to obtain an 
enhanced signal from the multiple microphone recordings by 
using beamforming alignments [2, 3] or using weighted 
channel summation [4]. Then, acoustic features are extracted 
from the enhanced audio signal for segmentation and 
clustering purpose. 

Although Bayesian Information Criterion (BIC) [2-5] has 
been widely adopted for the segmentation, but if the 
recordings are of poor quality, e.g. in low signal-to-noise ratio 
(SNR) from the distant microphone signals, BIC segmentation 
often results in a poor speaker change detection. For good 
performance, a common strategy is to over-segment a 
recording, and subsequently to regroup the segments by 
clustering. Over-segmentation however will results in too 
short segments to have a reliable clustering with the extracted 
acoustic features. Shorter segments contain less discriminative 
information to distinguish the speaker identities.  

In this paper, we describe an improved speaker diarization 
system based on our previous system [6] for the MDM task of 
the 2007 NIST Rich Transcription (RT07) Meeting 
Recognition Evaluation MDM. In the system, the data 
preparation module consists of the raw data Wiener filtering 
and beamforming for enhanced speech signals, time difference 
of Arrival (TDOA) [9] estimation and speech activity 

detection (SAD).  In the TDOA process, we employ an 
automatically way to select useful microphone pairs, and then 
use the TDOA information of these selected pairs to perform 
speaker turn detection and segmentation. The initial speaker 
clustering module via a two-stage TDOA histogram 
distribution quantization approach is applied for initial speaker 
clustering. Finally, the cluster purification module consists of 
the cluster purification and merging which is carried out by 
using a high-order GMM statistical modeling approach [11, 12] 
and the BIC Criterion.  We report the experimental results of 
RT07 in this paper. The modules described in this paper have 
contributed to our submission for the 2009 speaker diarization 
system of the 2009 NIST Rich Transcription Meeting 
Recognition Evaluation. 

The rest of this paper is organized as follows. In Section 2 
the data preparation is described. In Section 3, the two-stage 
speaker initial clustering is presented. In Section 4, the cluster 
purification method is introduced, in Section 5 we present the 
experimental results and finally the conclusion is given in 
Section 6. 

2. Data Preparation 
The speaker diarization system is depicted in Figure 1. The 
data preparation module consists of 3 components. They are as 
follows in the order of system flow: 

a) Wiener Filtering and Beamforming 
b) Speech Activity Detection (SAD) 
c) Time Difference of Arrival (TDOA) estimation 

The details are provided in the following sections.   
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Figure 1: Block diagram of the speaker diarization system 
 
2.1. Wiener Filtering and Beamforming 
In the multi-distant microphone recording scenarios, the 
quality of the recording data are poor.  In order to achieve 
good speech activity detection performance and speaker 
clustering, we have applied the Winner filtering to all the 
distant microphone channel data.  Based on these enhanced 
channel speech, a single enhanced channel is obtained by 
using the beamforming approach.  We simply adopt the 
Qualcomm-ICSI-OGI front end [7] tool and apply its Wiener 
filtering to all audio channels for speech enhancement. The 
enhanced audio channels are then filtered and summed to 
produce a beamformed audio channel using the BeamformIt 
toolkit [8].   
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2.2. Speech Activity Detection (SAD) 
One of the improvements for SAD is the introduction of a new 
speech/non-speech detector. In the SAD, we first generate 36 
MFCC features (12 MFCCs plus their first and second order 
derivatives) and the zero-crossing rates of each frame (in 30ms 
window and 15 ms shift). This feature is also used for the 
cluster purification describe in Section 4. We use all the 
features in each meeting recording to train initial speech and 
non-speech models by Expectation Maximization (EM) 
method [10].  The 10 percent frame features with the highest 
energies and relative low zero-crossing rates are selected as 
training data set for the speech modeling, while the 20 percent 
frame features with the lowest energies and relative higher 
zero-crossing rates as the training data for non-speech 
modeling [5].  Based on these two initial models, we test all 
the frames in each meeting recording and classify them into 
speech and non-speech. These classified frames are used to 
iteratively re-train the speech and non-speech models based on 
the Maximum a Posteriori (MAP) [10] approach, until the 
relative change of detected speech to non-speech ratio is less 
than 1%. The re-training processing is usually less than 10 
iterations. The speech and non-speech are modeled in 
Gaussian mixture models (GMMs) with 16 and 4 mixture 
component, respectively. The data in the NIST RT05 and 
RT06 have been used as the development test. 
 
2.3. TDOA Estimation 
This component provides the TDOA estimation [9] for all 
microphone pairs which will be passed to next component for 
further processing. The TDOA is the result of different 
placements of the microphones in the meeting room. The 
difference in placements means that speech originating from a 
source arrives at the microphones at different times. We make 
an assumption here that the speech source does not move. Any 
change in TDOA can be interpreted as a change in the speaker. 
Instead of applying the Normalized Least-Mean Square 
(NLMS) method to estimate the time delay of arrival in our 
previous paper [6], we use a much faster GCC-PHAT [9] 
method to estimate the TDOA for the MDM task. Given that 
K pairs of microphones are used to estimate the TDOA, the 
matrix [ , ]TDOA n k  stores the TDOA values. The TDOA 
values can be estimated as follows:  

For any two microphone signals )(nS k
i  and )(nS k

j of a 

given microphone pair k, while n is the segment index, GCC-
PHAT is given as [9]: 
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where FFT is the Fast Fourier transform and the * is the 
complex conjugate. And �  is the normalized factor (between 
0 and 1).  The TDOA for the microphones segment signals  

)(nS k
i  and )(nS k

j  is obtained as: 

)]),([(maxarg),(, nfRIFFTknTDOA k
PHATfji �           (2) 

where IFFT is the Inverse Fast Fourier Transform, n is the 
segment index, and k is the index of microphone pair. 
 

3. Histogram Quantization Clustering 
Generally speaking, the overall performance of a speaker 
diarization system can be largely affected by the initial speaker 
clustering. After a successful data preparation described in 

Section 2, this section is to carry out the initial speaker 
clustering, which will be done using the histogram 
quantization. Before the histogram quantization initial 
clustering, we first present how to automatically choose useful 
microphone pairs from multiple distant microphones. 
 
3.1. Microphone Pairs Selection 
It is a normal case in MDM meeting where a number of 
microphones are available with a large number of microphone 
pair permutations. For example, in the RT-07 EDI 20050216-
1051 task, it has 8 distant microphones in a circle array. Such 
array has possible 28 possible sensor pairs in combination. It is 
not wise to choose microphone pairs according to the physical 
location of multiple distant microphones because sometimes 
such information may not be available. Since the TDOA is the 
result of the different placements of the microphones in a 
meeting room, therefore, the higher dynamic range of TDOA 
histogram peak distribution, the better it presents the speaker 
physical position in the meeting room. Under such 
circumstances, we can judiciously choose pairs that generate 
discriminative peak distribution automatically by: 
 
a) Compute the TDOA values of all the possible combination 

of microphone pairs using (2) with normalized factor 0.995. 
b) Generate the histogram distribution of each pair’s TDOA 

vectors and find the peaks, which satisfy the following 
threshold: 

_Peak Thres
TT
B

�              (3) 

where T is the total number of frames and B is the histogram 
bin number. 

c) Find dynamic ranges among these peaks (peak to peak 
distance). 

d) Choose the largest 5 peak dynamic microphone pairs if the 
microphone pairs in each meeting are greater than 5. 

 
3.2. Within-Pair-Quantization  

With the selected microphone pairs in Section 3.1, we are able 
to perform within-pair-quantization on the TDOA values. A 
histogram is made from the TDOA values. Peaks can be 
located in the histogram and these peaks match the physical 
locations where much of the speech signals originate. The 
peaks will be used as centroids and all other frames are 
clustered to one of these centroids using a nearest neighbor 
approach. Then, the quantized TDOA information from 
multiple microphone pairs is merged by performing a second 
level of quantization. Every speech frame will have a set of 
labels obtained by performing within pair quantization on all 
retained microphone pairs. The unique labels are clustered into 
initial speaker clusters. Continuous frames with the same 
cluster labels then are grouped together to form continuous 
segments. The details are described in the following.  

For the kth microphone pair, the [ , ]TDOA n k  values are 
quantized to locate frequently occurring TDOA positions for 
this pair. The frequently occurring positions are those 

[ , ]TDOA n k  found by constructing a histogram.  Every peak in 
the histogram indicates that there is a significant amount of 
speech signals originating from that particular location. We 
make the assumption that speech signals originating from a 
single location will very likely belong to a single homogenous 
speaker. As such, the number of peaks can be used as an 
estimation of the number of speakers present in the meeting. 
The peaks in the histogram are taken as centroids and 
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[ , ]TDOA n k  values are quantized to these centroids using a 
nearest neighbor approach. 

Another important issue is how to decide the peak threshold 
and the number of the histogram bins used for the TDOA 
quantization.  From the development data from the NIST 
RT06, we have found that we can achieve the robust results 
according to the rule for the peak threshold selection as 
follows. 

If a meeting recording has a total of N speech frames, each 
having 512 samples in 32ms based on 16k sample rate, and the 
number of the bins used for the histogram quantization is B.  
We used the threshold given in (3) for the peak detection 
threshold. Only the peak of the bins in the histogram which is 
greater than the threshold 

_Peak Thres
T  will be regarded as the 

within-pair centroids. In addition, we have found that it is a 
good setting if the number of the histogram bins, B, is chosen 
between 40 and 50 in RT06 data. We will apply this setting for 
the RT07 data. 
 
3.3. Inter-Pair Quantization 
The previous section discusses quantization along the columns 
of ],[ knTDOA . The next step will perform quantization along 
the rows of ],[ knTDOA , i.e., to identify centroids across K 
microphones pairs. The same procedures as in Section 3.2 are 
used to find the row peak in ],[ knTDOA  matrix. Based on 
these two quantization matrix, we choose the N highest 
centroids as our initial clusters. All other histogram bins with 
low counts will be quantized to one of these centroids. We 
choose a reasonable number (e.g. N=9) as our initial speaker 
clustering number. 

The number of the initial speaker clusters is usually greater 
than actual number of speakers in the meeting. In the 
subsequent modules, we will exploit acoustic features for the 
cluster purification and cluster merging. 
 

4. Cluster Purification and Merging 
In Section 3.3, we have pointed out that only location-based 
information (TDOA) is used for histogram quantization 
clustering. Obviously, if the speakers had moved significantly 
or changed positions during the meeting, it is postulated that 
the results would be significantly poorer. In addition, we 
selected the N highest centroids as our initial speaker clusters. 
Obviously, we need to have extra efforts to obtain a better 
speaker clustering. In this section, a speaker cluster 
purification algorithm based on high-order GMM modeling 
approach and a cluster merging via BIC Criteria are conducted. 
A high-order statistical GMM approach is applied for segment 
purification and BIC based criterion is used for clustering 
merging. Only 36 MFCC features defined in Section 2.2 are 
used again in this section. 
 
4.1. Cluster Purification 
We access the reliability of the clusters obtained in the initial 
clustering. We employ the consensus [11], [12] or statistical 
clustering method together with the iterative GMM modeling 
to do the task. Multiple runs of the clustering process are 
obtained by using iterative GMM clustering approach to 
observe the statistical information for cluster purification. The 
procedures are as follows: 
 
a) Use the EM algorithm [10] to train a GMM with M=256 

Gaussian mixture components in which the covariance 

matrix is diagonal, by using all the data, named as GMM-
Root. 

b) For each speaker cluster obtained from the initial 
clustering in Section 3.3, the corresponding feature 
vectors are then to obtain a GMM by adaptive training 
from GMM-Root. The adaptation is done with the mean 
vectors only via MAP algorithm [10]. For N initial 
speaker clusters, their GMMs are GMM-1 ... GMM-N. 

c) Score every segment against the N GMMs and assign 
each segment to the cluster whose GMM yields the 
highest likelihood score. 

d) A new set of N GMMs re-adapted using the feature 
vectors assigned in Step c. 

e) Repeat the Step a) to c), until the segment assignments 
have been stabilized (usually in less than 20 iterations). 

f) Reduce the number of Gaussian components in the GMM 
by 8 each time and repeat the Step a) to f) (each time. 
M=M-8) until the number of Gaussian components has 
been reduced to 32.  

g) Based on the above multi-iterative runs, each cluster only 
chooses the segments with more than 60% total iterative 
runs counts inside its cluster, and use them to re-train the 
GMM of this cluster via EM. The GMM size is set to 256. 
We found that we still have the same cluster number N 
GMM_1 to GMM_N. 

h) The remaining segments in each of the clusters are then 
scored against GMM-1 to GMM-N. These segments will 
be assigned to the cluster whose GMM yields the highest 
likelihood score. 

 
4.2. Cluster Merging via BIC 
Based on above-mentioned cluster purification, BIC criterion 
is applied to check if some clusters can be further merged 
together. Suppose that there are two initial clusters X and Y, 
and let Z=X U Y to be the merged cluster. With the BIC 
criterion, we can decide whether these initial clusters are from 
the same speaker or not as follows: 
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where the �  is the penalty factor (set to be 1) and M is total 
number of frames in the cluster X or Y. 

Based the purified N clusters in Section 4.1, we have 
2/)1( �NN  combination of BIC scores. If lowest score in 

these BIC values is less than zero, we will merge the related 
two clusters into one. This merging procedure is performed 
until the lowest score of clusters BIC scores is greater than 
zero.  We use EM to train the model and the model size is set 
to be 4. 

After completing the first round purification and the cluster 
merging, we repeat the purification process described in 
Section 4.1 again and obtain the final speaker diarization 
results. 
 

5. Experiments on RT07 
Based on the above proposed system, we evaluated our system 
on the NIST RT07 MDM evaluation task. The NIST RT05 and 
RT06 MDM evaluation corpus are used as the development 
data to fine tune the system for the NIST RT07 MDM 
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evaluation corpus. The system is also used to evaluate the 
speaker diarization system of the 2009 NIST RT MDM task.  
The system performance is evaluated by computing the 
Diarization Error Rate (DER) against the official Rich 
Transcription Time Mark (RTTM) released by NIST [1].  

Table 1 and Table 2 present the speech activity detection 
(SAD) DER rates and speaker diarization rates on the NIST 
RT07 MDM evaluation task. The evaluations consist of 8 
tasks, as listed in Table 2.  The number of microphone 
recordings ranged from 3 (for the CMU tasks) to 16 (for the 
EDI tasks). The recordings for all tasks are made using distant 
microphones or microphone arrays.  Table 3 summarized the 
results of NIST09 MDM task. 

In Table 1, the SAD module produced significant 
improvements. It reduces an absolute reduction of 11.2% in 
DER, yields an absolute reduction of 5.6% over the SAD in 
our previous system [6].  The results are also consistent with 
ICSI results reported in [5]. 
 

Table 1.  RT07 Speech Activity Detection Rates 

 SAD 
DER 
(%) 

SAD Missed 
Speaker 

SAD False 
Alarm Speaker 

seconds % Seconds % 
Without SAD 14.3 0.0 0.0 1005.2 14.3 

With SAD 3.1 85.2 1.2 170.2 1.9 
Previous System 

SAD [6] 8.7 326.3 4.7 280.3 4.0 

 
 

Table 2.  RT07 Speaker Diarization Error Rates 

 
Task 

DER (%) Previous 
System [6] Histogram 

Clustering 
Initial 

Purifying 
BIC 

Merging 
Final 

Purifying 
1 18.07 18.04 15.90 15.80 19.36 
2 7.98 8.27 7.34 7.40 12.46 
3 13.87 13.91 13.43 11.04 20.69 
4 37.13 37.04 5.65 5.86 15.00 
5 35.79 33.67 8.23 6.71 12.66 
6 17.87 7.53 5.70 5.29 13.36 
7 31.29 17.95 11.08 5.26 11.32 
8 36.98 34.23 15.08 9.61 18.45 

All 24.87 21.13 10.27 8.31 15.32 
1= CMU_20061115-1030, 2= CMU_20061115-1530,  
3= EDI_20061113-1500, 4= EDI_20061114-1500 
5='NIST_20051104-1515, 6=NIST_20060216-1347 
7=VT_20050408-1500, 8=VT_20050425-1000 

 
Table 3.  Summarized Results of RT09 MDM Task 

 
Task 

Speaker Diarization Error  DER (%) SAD 
DER(%) Histogram 

Clustering 
Initial 

Purifying 
BIC 

Merging 
Final 

Purifying 
All 29.63 28.00 10.04 9.54 2.74 

 
According to the results shown in Table 2, the system 

yielded an overall DER of 24.87% after histogram 
quantization clustering which provides a good start point for 
the MDM speaker diarization. 

After applying the first purification (without BIC merging), 
the system yielded an overall DER of 21.13%.  We observed 
that for some meeting recordings, this component can 
significantly reduce their DER rates, e.g. for VT 20050408-
1500, its DER drops from 31.29% down to 17.95%, and for 
NIST_20060216-1347, it drops from 17.87% down to 7.53%.  
More important, this component has purified the initial 
clusters and make it easy for BIC based merging process to 
merge the initial speaker clusters into the final speaker clusters.  

In the BIC merging component, the overall DER has been 
reduced from 21.13% to 10.27%.  It is observed that the 
system has identified exact same number of speakers with the 
actual number of speakers for RT07 tasks. In our primary 
experiment, we found that the BIC merging module can not 
accurate identify the correct numbers without the initial 
purification. 

After the cluster merging, the purification is further applied 
on the merged speaker clusters.  Finally, the system yielded an 
overall DER 8.31%. This system greatly outperformed our 
previous system [6] with overall DER of 15.32%. 

From Table 3, we can see that our proposed system 
achieved similar results with RT07 for RT-09 evaluation data. 

6. Conclusions 
The proposed improved speaker diarization system is found to 
yield much better performance on NIST RT07 evaluation set 
in a comparison to our previous system [6] that was submitted 
to NIST RT07 Meeting Recognition MDM evaluation. The 
results show that the proposed speech activity detector is 
effective for non-speech removal component. In addition, the 
proposed statistical purification strategy and merging scheme 
help to improve overall speaker diarization performance and 
yield an overall DER of 8.31%. 
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