
Towards Unsupervised Spoken Language Understanding:
Exploiting Query Click Logs for Slot Filling

Gokhan Tur1,2, Dilek Hakkani-Tür1,2, Dustin Hillard1, Asli Celikyilmaz1

1Microsoft Speech Labs, 2Microsoft Research
Mountain View, CA, 94041

{gokhan.tur,dilek,hillard,asli}@ieee.org

Abstract
In this paper, we present a novel approach to exploit user

queries mined from search engine query click logs to bootstrap
or improve slot filling models for spoken language understand-
ing. We propose extending the earlier gazetteer population tech-
niques to mine unannotated training data for semantic parsing.
The automatically annotated mined data can then be used to
train slot specific parsing models. We show that this method
can be used to bootstrap slot filling models and can be combined
with any available annotated data to improve performance. Fur-
thermore, this approach may eliminate the need for populating
and maintaining in-domain gazetteers, in addition to providing
complementary information if they are already available.
Index Terms: spoken language understanding, slot filling, data
mining, named entity extraction, unsupervised learning

1. Introduction and Motivation
Spoken language understanding (SLU) in human/machine spo-
ken dialog systems aims to automatically identify the user’s
goal-driven intents, as expressed in natural language and ex-
tract associated arguments or slots [1]. An example utterance
with semantic domain, intent and slot annotations is shown in
Table 1. The system can then decide on the most appropriate
next action to take, according to the domain specific semantic
template.

The state-of-the-art approach for training SLU models re-
lies on supervised machine learning methods. An exhaustive
survey on intent determination and slot filling methods can be
found in [1]. These models require a large number of in-domain
sentences which are semantically annotated by humans, a very
expensive and time consuming process. Additionally, SLU
models require in-domain gazetteers (such as city, movie, actor,
or restaurant names) for better generalization. However, popu-
lating and maintaining these gazetteers, which are typically very
dynamic and need constant maintenance, requires a significant
amount of manual labor and typically semi-automated knowl-
edge acquisition techniques are employed.

Given that building a domain-independent SLU system, or
a system which understands anything in any domain, is still an
unsolved problem, the approach taken in this paper is to mine
web search query click logs in order to quickly bootstrap SLU
models into slot filling for target domains. Our approach as-
sumes that a semantic template exists for a given target do-
main. This bootstrap model can then be improved once anno-
tated training data becomes available.

While similar approaches have successfully been applied
to domain detection and intent determination tasks, as well as
to automatically populating domain gazetteers, to the best of

Utterance show me recent action movies by spielberg
Domain: Movie
Intent: Find Movie
Genre: action
Date: recent
Director: spielberg

Table 1: An example utterance with semantic annotations.

our knowledge, there is no previous work on exploiting mined
data directly for slot filling. For instance, Li et al. used query
click logs to determine the domain of the query (typically not
in natural language), and then inferred the class memberships
of unlabeled queries from those of the labeled queries using the
urls the users clicked [2]. For example, the queries of two users
who clicked on the same url (such as, www.hotels.com) are as-
sumed to belong to the same domain (“hotels” in this case).
In our earlier work, we extended this idea in order to use the
noisy supervision obtained from query click information into
the semi-supervised label propagation algorithm by sampling
high-quality query click data mined from query logs [3]. This
resulted in a 20% relative reduction in the domain detection er-
ror rate for SLU in a semi-supervised setup.

Most related to slot filling, Singh et al. proposed a semi-
supervised learning method to improve the named entity ex-
traction model used for text advertisements [4]. Starting from
an existing semantic structure, they trained statistical models to
semantically parse short text advertisements by clustering other
non-structured elements using topic models. Li et al. exploited
query click logs leveraging domain-specific structured informa-
tion for web query tagging [5]. They have built semi-supervised
models using these derived labels. Wang et al. leveraged
structured HTML lists to automatically generate gazetteers [6].
These gazetteers were then used to improve the slot filling mod-
els. Liu et al., extending this approach, proposed automatically
populating gazetteers from the web queries to be used in slot
filling [7]. Using a seed gazetteer, they mined the query click
logs to expand it using a generative model. They learned tar-
get websites where users clicked based on the seed gazetteer
entries. For example, www.imdb.com/title is a candidate web-
site for movie names. Then they added other queries hitting the
same website with high frequency as new gazetteer candidates,
and then used statistical methods to weigh them. The contextual
words (such as in cast of avatar or when was the movie as good
as it gets released) were then stripped out using the existing
seed gazetteer entries.

The proposed approach in this paper is a natural extension
of the work of Liu et al.: Instead of stripping out the context
words found in candidate entities, they are used for training slot
filling models. The clicked URLs indicate entities, thereby pro-

Copyright © 2011 ISCA 28-31 August 2011, Florence, Italy

INTERSPEECH 2011

1293

viding us with the context needed for semantic parsing. This is
implicitly annotated training data for bootstrapping or improv-
ing slot filling models and may eliminate the need for main-
taining gazetteers. However, our approach also complements
earlier efforts and can be used with any manually crafted or au-
tomatically populated gazetteers.

In the next section, we present our slot filling system. Then
in Section 3, we present the proposed approach in detail. Then
in Section 4, we present the experiments and results.

2. Semantic Parsing
Following the state-of-the-art approaches for slot filling [8, 9,
among others], we use discriminative statistical models, namely
conditional random fields, (CRFs) [10], for modeling. More
formally, slot filling is framed as a sequence classification prob-
lem to obtain the most probable slot sequence:

Ŷ = argmax
Y

p(Y |X)

where X = x1, ..., xT is the input word sequence and Y =
y1, ..., yT , yi ∈ C is the sequence of associated class labels, C.

CRFs are shown to outperform other classification methods
for sequence classification [1], since the training can be done
discriminatively over a sequence. The baseline model relies
on word n-gram based linear chain CRF, imposing the first or-
der Markov constraint on the model topology. Similar to maxi-
mum entropy models, in this model, the conditional probability,
p(Y |X) is defined as [10]:

p(Y |X) =
1

Z(X)
exp

(∑
k

λkfk(yt−1, yt, xt)

)
with the difference that both X and Y are sequences instead of
individual local decision points given a set of features fk (such
as n-gram lexical features, state transition features, or others)
with associated weights λk. Z(X) is the normalization term.
After the transition and emission probabilities are optimized,
the most probable state sequence, Ŷ , can be determined using
the well known Viterbi algorithm.

The in-domain gazetteer entries are also treated in the same
framework as any additional features. While the gazetteer en-
tries are marked without considering context, the slot filling
model aims to decide on whether they constitute a slot. More
formally, an extra set of features is created for each gazetteer:

fG,c(yt−1, yt, xt) = δ(xt ∈ G)δ(yt = c)

where δ(xt ∈ G) is for querying membership (B, I, or O) for
that gazetteer, and c is the slot filling class.

In this study, we follow the popular IOB (in-out-begin) for-
mat in representing the data as shown below. For the gazetteer
features, instead of treating the entry as a single token (such as
gone with the wind), as done in [9], this is considered to be an
additional feature for each word for the linear chain CRF. This
is important since gazetteer entries may overlap. For instance,
if the city gazetteer is used in a flight information system, the
following would be the corresponding data:

flights from boston to new york today
O O B-city O B-city I-city O
↓ ↓ ↓ ↓ ↓ ↓ ↓
O O B-dept O B-arr I-arr B-date

3. Approach
Currently, the state-of-the-art slot filling approaches exploit
both context and gazetteer information, as explained above.
These approaches need large amounts of semantically anno-
tated natural language data to model the context. Humans do
not encounter any problem in understanding that inception is a
movie name if used in context, such as find me movies similar
to inception, even if this is the first time they have heard about
this movie. However, using context requires sample utterances
where slots are marked. Furthermore, constant maintenance of
the in-domain gazetteers is required as new entries are intro-
duced everyday, and they will fail in cases where users do not
utter the exact name, which is always an issue with longer en-
tries (e.g., the frog and the princess for the movie the princess
and the frog or beautiful life for the movie life is beautiful).
Another big problem is that most gazetteers contain thousands
or maybe millions of entries. As an example, in a standard
knowledge-base there are more than 100,000 movie names. In
most real-life scenarios, the entries in these gazetteers are also
highly ambiguous. For example the word washington can be a
city, state, movie, restaurant, or person name. This problem of
name tagging for SLU has usually been overseen in earlier work
(such as in ATIS [13]), and simple table lookup-based methods
have been used to mark named entities in user utterances.

3.1. Query Click Logs

To alleviate these problems, the proposed approach relies on
exploiting an abundant set of web query click logs, which pair
web search queries with their click information. Some example
queries with resulting clicks are as follows:

Query: who played the count of monte cristo
URL: www.imdb.com/title/tt0047723/fullcredits
Query: avatar soundtrack
URL: en.wikipedia.org/wiki/Avatar soundtrack

While this is very valuable data waiting to be mined for
language understanding, it is not generally this straightforward,
since most queries are just keywords (instead of natural lan-
guage sentences) and include typos, and because the implicit
supervision via click information is very noisy. However, since
there are millions of such pairs, high precision is more impor-
tant than missing some of the useful queries.

3.2. Mining Data

The proposed approach for mining the clicked URL data con-
sists of two stages: (i) Detection of target URLs and (ii) Min-
ing corresponding data. In the first stage, the target phrases are
determined for each slot type. As an example, for the movies
domain, this may correspond to detecting websites for each of
the movie names. For this step, our approach is similar to Lin et
al.’s approach [7]; however, instead of relying on a seed train-
ing set, we rely on query frequencies. We start with a target
site (such as imdb.com/title for the movie names). This can be
manually determined or easily retrieved using a few known ex-
amples. Then, it is reasonable to assume that the most frequent
phrase hitting a given target URL with frequency above a given
threshold will be the main entity. The output of this first stage
is a list of entities and their target URLs. More formally,

m̂ = argmax
m

frequrl(m)

where m is a candidate phrase for each entity and frequrl(m)
is the frequency of query m resulting in click to the website

1294

Figure 1: Conceptual figure for semi-supervised slot fill-
ing models exploiting mined data optionally using available
gazetteers.

url. For example, www.imdb.com/title/tt047723 can be the tar-
get URL for the movie the count of monte cristo.

Once the entities and associated URLs are determined, in
the second stage, all queries hitting those links are extracted if
they include the exact name of the entity. This naturally pro-
vides automated annotation of queries since the entity name is
known. For example, at the end of this process, the data we
have for the movie names looks like the following:

review of the hand
mad men season one synopsis
who directed the original step up movie
four lions miami showtimes

3.3. Use for Slot Filling

The mined data for each slot type, s, is then used to train statis-
tical models. Similar to semantic parsing, CRF is employed in
this stage, and linear models are trained using the mined data to
output ps(Y s|X), where Y s = ys1, ..., y

s
T , yi ∈ Cs is the tag

sequence for that slot type:

Ŷ s = argmax
Y s

p(Y s|X)

One advantage of using web query data is that it is always up-to-
date (for example, the movies domain includes even the movies
which are not yet released) and naturally incorporates the enti-
ties, eliminating the need for maintaining a gazetteer. However,
these samples are in query language, not in natural language.

Depending on whether in-domain annotated data is avail-
able or not, the bootstrap models trained using this data for each
slot can be used in two ways:

• Case 1 (Unsupervised): In cases where there is abso-
lutely no in-domain annotated data, the mined data can
be used to build bootstrap slot filling CRF models. For
example, the Viterbi algorithm can be used to detect the
most probable slot sequence given the model outputs.

Ŷ = argmax
Y

p(Y |Y s)× p(Y s|X)

• Case 2 (Semi-supervised): When there is some in-
domain annotated data available, the slot specific model
can provide extra features to improve performance. In
such a case, we build cascaded models, first CRF en-
tity models trained on query logs and a following CRF
trained on its output and available annotated natural lan-
guage data, as depicted in Figure 1. More formally, an
extra set of features is created from each unsupervised
entity model:

fys,c(yt−1, yt, xt, y
s
t) = δ(ŷst = ys)δ(yt = c)

where δ(ŷst = ys) is determined by the result of the
Viterbi algorithm for the word xt using the unsupervised

Training Test Mined
Data Data Data

sentences 2,407 289 2,020,429
words 20,934 2,542 15,211,944
slots 3,358 393 2,020,429
movie names 1,254 156 2,020,429

Table 2: Characteristics of the data used in experiments.

model on the training set for slot s, as explained above,
and c is the slot filling class.

In both cases, the in-domain gazetteers can be exploited as
additional features when available, since they provide comple-
mentary information.

4. Experiments and Results
In order to demonstrate how query click logs are exploited for
slot filling, a proof-of-concept study is performed. The un-
derstanding domain movies is chosen, where the users present
queries about various movies, such as who is the director of
avatar, show me the movies with academy awards, or when is
the next harry potter gonna be released. The natural language
data set from this domain consists of about 2,700 sentences,
with about 300 sentences reserved for testing. This includes
about 3,750 slots (about 1,400 movie names) from 21 slot types
(such as mpaa rating or release date) as shown in Table 2.

We only focus on bootstrapping the slot model for movie
names. To compile a gazetteer for the movie name slot, we
dump the list of all movies from freebase.com, a total of
148,738 movies. Since using such a gazetteer results in very low
precision, we filter out the short entries with low inverse docu-
ment frequency (IDF) (such as up), resulting in 91,442 movies
names1. This improves the precision from 11% to 85%.

The website detected as the target base URL is
imdb.com/title. The number of candidate Bing queries result-
ing in clicks to this site is about 6 million. Out of these, the
number of mined queries which has the exact movie name as
the target website is about 2 million. We ended up compiling
about 1,000 times more data than the small amount of manually
annotated data. However, note that these are mostly keywords
intended for web search. Hence, the model trained on these ex-
amples2 resulted in only slightly better performance than one
obtained using the filtered gazetteer as shown in Table 3.

It should be noted that, using only the word n-grams in
the small amount of training data as features for training the
CRF-based slot filling model beats both using only gazetteers
or using only the mined slot model. As expected, using filtered
gazetteers as additional features improves the performance sig-
nificantly from 69.72% to 71.52%, while using the full gazetteer
results in a degradation in performance. Instead of the gazetteer,
using mined model for movie names results in similar overall
slot filling performance.

Our goal in this work is to investigate the effectiveness of
the mined slot model, compared to these baseline performance
figures. If its output is used as an additional feature for CRF-
based slot filling, as explained above, this results in 2% better
absolute performance than using a filtered gazetteer (79.14%
compared to 77.20%3) for parsing movie names, however it did

1A companion submission focuses on our approach to this process.
2We use the CRF++ toolkit in this study.
3This is a statistically significant improvement according to z-test

with 0.95 confidence interval

1295

Movie Name All Slots
F-Measure F-Measure

(1) Only full gazetteer 18.07% 14.02%
(2) Only filtered gazetteer 60.91% 30.83%
(3) Only mined model 51.65% 31.28%
(4) Manually annotated data 72.51% 69.72%
(1) + (4) 71.52% 68.56%
(2) + (4) 77.20% 71.52%
(3) + (4) 79.14% 71.72%
(2) + (3) + (4) 78.88% 71.86%

Table 3: Slot filling performances under various conditions

Figure 2: Performance of semi-supervised models for the movie
name slot with and without any gazetteer information exploiting
mined data.

not result in better performance (78.88% compared to 79.14%)
when combined with the filtered gazetteer.

To provide an additional perspective on these results, the
learning curves with different sizes of manually annotated data
are provided in figures 3 and 2 for the overall performance of
movie name slot filling and parsing . Throughout the curves,
using the mined slot model results in comparable or better per-
formance than using the filtered gazetteer, except when there is
very little data. Furthermore, combination of gazetteer and slot
model features usually results in even better performance. For
example, when there are only 1456 sentences, the movie name
parsing performance increases from 72.73% to 78.37%. How-
ever, less improvement is observed as the amount of annotated
data increases, as expected.

5. Conclusions and Future Work
In this paper, we have presented a data mining based approach
to bootstrap or improve spoken language understanding mod-
els for slot filling, and demonstrated its use. Our approach re-
lies on exploiting query click logs for finding queries hitting the
webpages strongly associated with slot entities and using con-
textual information to train slot specific models. These models
may then be used as additional features during slot filling. We
have demonstrated that this approach may not only eliminate
the need to maintain slot specific gazetteers, but can also fur-
ther improve system performance when combined. Our work
can be considered as a promising first step towards developing
fully unsupervised (or minimally supervised) SLU models for
target domains.

While this approach has been proposed in the context of

Figure 3: Performance of semi-supervised slot filling models
with and without any gazetteer information exploiting mined
data.

SLU, the findings can easily be generalized to other domains
such as query tagging or information extraction.

Our future work aims to pursue this study further towards
extending to other slots where the URL pattern is not that obvi-
ous and combining with intent determination in a conversational
understanding framework.

6. References
[1] G. Tur and R. De Mori, Eds., Spoken Language Understanding:

Systems for Extracting Semantic Information from Speech, John
Wiley and Sons, New York, NY, 2011.

[2] X. Li, Y.-Y. Wang, and A. Acero, “Learning query intent from
regularized click graphs,” in Proceedings of the ACM SIGIR, Sin-
gapore, 2008.

[3] D. Hakkani-Tür, L. Heck, and G. Tur, “Exploiting query click
logs for utterance domain detection in spoken language under-
standing,” in Proceedings of the ICASSP, Prague, Czech Repub-
lic, 2011.

[4] S. Singh, D. Hillard, and C. Leggetter, “Minimally-supervised
extraction of entities from text advertisements,” in Proceedings of
the HLT-NAACL, Los Angeles, CA, June 2010.

[5] X. Li, Y.-Y. Wang, and A. Acero, “Extracting structured informa-
tion from user queries with semi-supervised conditional random
fields,” in Proceedings of the ACM SIGIR, Boston, MA, 2009.

[6] Y.-Y. Wang, R. Hoffmann, X. Li, and J. Szymanski, “Semi-
supervised learning of semantic classes for query understanding:
From the web and for the web,” in Proceedings of the CIKM,
Hong Kong, 2009.

[7] J. Liu, X. Li, A. Acero, and Y.-Y. Wang, “Lexicon modeling
for query understanding,” in Proceedings of the ICASSP, Prague,
Czech Republic, 2011.

[8] Y.-Y. Wang and A. Acero, “Discriminative models for spoken lan-
guage understanding,” in Proceedings of the ICSLP, Pittsburgh,
PA, September 2006.

[9] C. Raymond and G. Riccardi, “Generative and discriminative al-
gorithms for spoken language understanding,” in Proceedings of
the Interspeech, Antwerp, Belgium, 2007.

[10] J. Lafferty, A. McCallum, and F. Pereira, “Conditional random
fields: Probabilistic models for segmenting and labeling sequence
data,” in Proceedings of the ICML, Williamstown, MA, 2001.

[11] M. Jeong and G. G. Lee, “Exploiting non-local features for spoken
language understanding,” in Proceedings of the ACL/COLING,
Sydney, Australia, July 2006.

[12] S. Sarawagi and W. W. Cohen, “Semi-markov conditionalrandom
fields,” in Proceedings of the NIPS, 2004.

[13] P. J. Price, “Evaluation of spoken language systems: The ATIS
domain,” in Proceedings of the DARPA Workshop on Speech and
Natural Language, Hidden Valley, PA, June 1990.

1296

