
Web-enhanced Content Retrieval for Information Access Dialogue System

Donghyeon Lee1, Cheongjae Lee2, Minwoo Jeong1, Kyungduk Kim1, Seokhwan Kim1, Junhwi Choi1
and Gary Geunbae Lee1

1 Department of Computer Science and Engineering, POSTECH, South Korea
2 Academic Center for Computing and Media Studies, Kyoto University, Japan
{semko, lcj80, stardust, getta, megaup, chasunee, gblee}@postech.ac.kr

Abstract
We consider the problem of content retrieval with complex
queries for an information access dialogue system. Traditional
information access dialogue systems rely on exact query
matching and heuristic rules to find relevant content in a
relational database. To deal with complex queries, a dialogue
system is used to attain deep semantic processing such as full
semantic parsing and ontology-based reasoning. However,
these systems require a large amount of semantic annotation
and domain expert knowledge that are often very expensive to
obtain and thus have been limited in practice. In this paper, we
present a simple alternative method where web-searched
documents can contribute to enhanced vector space model-
based content retrieval. Our model captures underlying co-
occurrence patterns between the query and the contents. An
efficient ranking algorithm is applied to retrieve the relevant
contents. One merit of the proposed approach is that it does
not require heavy semantic processing, and therefore, it results
in efficient content retrieval. We demonstrate that our method
is beneficial in an electronic program-guided dialogue system.

Index Terms: web-enhanced content retrieval, information
access dialogue system

1. Introduction
In recent years, information access dialogue systems have
been studied to construct a user-friendly interface to retrieve
desired information. For example, a user can query the
dialogue system to demand air flight information [1] and to
search books [2] or electronic programs [3]. Traditional
dialogue systems for information access store the contents of
domain-specific information in a relational database (RDB),
consisting of relational tuples. Content retrieval is a key
component of information access dialogue systems to retrieve
the relevant contents (i.e., a tuple in the RDB) for answering a
user’s request.

In most RDB-based dialogue systems, content retrieval is
carried out as exact query matching and matching with
heuristic query expansion rules. However, these systems often
fail to deal with complex queries. As an example, consider a
user query to an electronic program guide (EPG) system: “I
want to watch Jisung Park’s game.” In practice, shallow
semantic parsing is applied to extract reliable semantic
information, e.g., search_program(person=‘Jisung
Park’), and the dialogue system retrieves tuples with fields
that match the query exactly or partially. As the contents
database contains only a limited number of structured fields,
such as program title and broadcast hours, the system returns
no result for this example.

To overcome such a limitation, content retrieval is used to
attain deep semantic processing, for instance, full semantic
parsing [4] and ontology-based reasoning [5]. To make the
complex query understandable, a full semantic parser might

convert the raw sentence into first-order logic, such as
λx.game(x) roster(x, Jisung Park). Alternatively,
a domain-specific ontology can be used instead of an RDB to
perform reasoning on complex user queries [5]. Despite their
generality and expressive power, both approaches have their
own challenges: semantic parse tree-annotated corpora and
ontology resources are scarce and difficult to obtain. In
addition, semantic inferences based on these approaches are
often very expensive. Therefore, such approaches have been
limited in practice for information access dialogue systems.

In this paper, we propose an alternative approach to content
retrieval that makes it feasible for our dialogue system to deal
with complex queries. Instead of using heavy semantic
processing, we use a vector space model (VSM) that forms a
query and a tuple term vector. Our model accommodates web
documents that are searched for each user query and tuple in
the contents database to enhance the VSM with a scarcity of
common terms. For example, the web search result for the
phrase “Jisung Park” would contain expanded but closely
related terms, such as “Manchester United” and “Premier
League soccer player.” We expect that the term distribution of
web-searched documents of the relevant tuple is close to that
of the documents searched by the user query. We argue that
web documents could be a valuable resource to capture
distributional similarity between the query and the contents.
As a ranking algorithm, we present an efficient ranking
function that combines two VSMs. As our method requires no
expensive semantic analysis and additional expert knowledge,
it results in efficient context retrieval. We apply our method to
the EPG dialogue system, in which a user can query in natural
language to access broadcast information. In our experiment,
we demonstrate that the resulting method achieves a mean
reciprocal rank of 0.775, and this compares favorably with the
0.576 shown by the baseline model.

The remainder of this paper is structured as follows. In
Section 2, we give background on content retrieval for
information access dialogue systems. Section 3 presents our
web-enhanced content retrieval model and Section 4 provides
an empirical evaluation of the proposed method. In Section 5,
we conclude with a discussion of future work.

2. Content Retrieval for Information
Access Dialogue Systems

In this section, we present prior studies on content retrieval for
information access dialogue systems and show challenges that
make it possible to deal with complex user queries.

In information access dialogue systems that are
implemented with an RDB as their knowledge content
container, the goal of content retrieval is to find the most
relevant tuple or a list of relevant tuples in the RDB tables,
given a user query in natural language. As a natural language
query is semantically ambiguous, the dialogue system first
attempts to parse the speech for recognition. In practice, we

Copyright © 2011 ISCA 28-31 August 2011, Florence, Italy

INTERSPEECH 2011

1297

are not always able to develop a full parser due to speech
recognition errors and because of the characteristics of spoken
language. Therefore, most dialogue systems apply domain-
dependent, shallow semantic parsing to extract reliable
semantic information (e.g., the user action and a domain-
specific named entity) from the natural language query.
Extracted information is structured as a slot/filler frame, and
then a dialogue manager updates such a frame as a dialogue
state with a discourse history. Traditional RDB-based dialogue
systems implement exact matching rules of slot/filler frames,
executing an SQL query to the contents of the RDB and using
heuristic query expansion rules to achieve a better coverage.
However, this method often fails to retrieve desired contents,
in particular for complex queries. As shown in Figure 1(a), no
match between the SQL queries and the RDB was made.

To alleviate this problem, there are roughly three categories
of work: full semantic parsing, ontology-based dialogue
systems and VSM-based content retrieval. In theory, full
semantic parsing gives us a complete logical form for the
underlying semantics. For example, for the phrase “Jisung
Park’s game,” a user might mean “a list of all soccer games in
which Jisung Park is rostered,” with the first-order logic form
λx.game(x) roster(x, Jisung Park). In practice,
however, this approach results in low accuracy when mapping
ambiguous lexical items to semantic concepts (e.g., from a
possessive, “Park’s”, to a roster). In addition, this approach
needs a large number of semantic parse tree annotations to
learn the semantic parser.

An ontology-based dialogue system was among the first
applications of ontology-based reasoning to dialogue systems
[5]. In [5], the investigators built a domain-specific ontology
that consists of objects and their relations, representing a
hierarchical structure of the semantic relatedness of concepts.
For our example, “Jisung Park” is an instance of a player
object that has an isMemberOf relationship to a club object.
Although ontology-based reasoning is powerful, creating an
ontology itself is challenging.

As an alternative to expensive semantic processing, we
consider VSM-based content retrieval. In the context of
information retrieval, each tuple in the RDB is treated as a
(structured) document, and then a query-tuple VSM is used to
yield a ranked list of tuples according to their relevance to the
query. Some of the prior work on voice search presented
VSM-based content retrieval in this manner [6, 7].

Figure 1: An example of content retrieval for an
information access dialogue system in the EPG
domain.

There has been only a limited amount of work applying
VSM to content retrieval for information access dialogue
systems, e.g. [8]. We construct a query term vector using the
slot/filler frame (or natural language query) and a tuple term
vector. Next, we assume that the distance between the query
and the document vectors has a degree of relatedness.
However, a complex query still remains a challenge. As shown
in Figure 1(b), there is no overlapping term between the query
vector and the tuple vector, so that the similarity score would
be 0. This phenomenon occurs because both the query and the
contents tuple tend to be too short to represent their meanings.
Accordingly, we must bridge the gap between them. To
address this problem, we will introduce a simple, but effective,
method that uses web documents as additional knowledge.

3. Web-enhanced Content Retrieval
Our key idea for robust content retrieval is to use a collection
of web-searched documents as an additional resource to
capture underlying co-occurrence patterns between the query
and the tuple. In this section, we implement our idea by
extending the conventional VSM.

3.1. Model
Our content retrieval model consists of two VSMs: local and
web-enhanced VSM. A local VSM (Local-VSM) forms a
query vector from the slot/filler frame and a tuple vector from
the tuple in the contents of the RDB. As both the frame and
the tuple are structured, we can construct a structured term
vector to represent structural information and can also
consider a structural ranking algorithm, for example, BM25f
[9]. As stated in [9], it is often expensive to tune the parameter
(or weight) for each structured field. In this work, we assume
an unstructured term vector that contains only lexical items in
the frame and the tuple. As a term weight, we use a standard
tf.idf scheme, in which we compute the term frequency and the
inverse document (i.e., tuple) frequency. For example, Figure
1(b) shows a query and a tuple term vector for a Local-VSM.
We omit the idf score and assume 10 terms in the first tuple for
clarity. Unfortunately, Local-VSM does not make a significant
value for a pair of vectors in our example, because there is no
matched term.

A web-enhanced VSM (Web-VSM) is used to resolve this
non-matching term problem. We begin by illustrating how the
tuple term vector takes advantage of web documents. For each
tuple in a database, we use attribute values (that is, lexical
terms described above) as keyword phrases for the web search
engine. Next, we construct a tuple vector that consists of a
term weight computed over the obtained documents. To make
our model more reliable and to accelerate ranking, we use a
simple term selection technique; we exclude terms whose idf
does not exceed a fixed threshold value (in our experiment,
0.3). We index all such web-enhanced tuple vectors in advance.

A query term vector in Web-VSM can be built in a similar
way. In a preliminary experiment, we found, however, that the
slot/filler frame is inaccurate when our shallow semantic
parser takes a complex query. This result occurs because the
complex query is more ambiguous. To avoid generating a
deficient keyword phrase, we also consider all terms in the
natural language query as a keyword phrase. For example, we
use both “Jisung Park” and “I want to watch Jisung Park’s
game” as the keyword phrase. We construct two separate
query term vectors using slot/filler and full sentence keyword
phrases.

A premise in our web-enhanced content retrieval is that web
documents are beneficial for accommodating expanded terms
that may be closely related to terms appearing in the query and

No Program
title Channel Broadcast

hours …

1 ManUtd vs.
Arsenal ESPN 17:00 –

20:00 …

2 Chelsea vs.
Liverpool

KBS
Sports

14:00 –
17:00 …

… … …

User query

Contents RDB

I want to watch Jisung Park’s game.

Semantic representation

Select * from `tv_schedule` where
person like ‘%Jisung Park%’

SQL query

<(Jisung,0.5), (Park,0.5)>

Term vector

<(ManUtd,0.1), (vs,0.1), (Arsenal,0.1),
(ESPN,0.1), … >

Term vector

Not match Not match

search_program(person=‘Jisung Park’)

(a) (b)

(`tv_schedule`)

1298

tuple. However, searching the web might increase the
overhead needed to process all of the queries. To alleviate this
problem, we use a two-step approach; we first do content
retrieval with a Local-VSM; then, we search the web to
compute a query vector for the Web-VSM when the previous
retrieval stage produces no result or when all tuples do not
exceed the threshold. Consequently, this process reduces the
cost of searching the web, and Web-VSM focuses on complex
queries that are not covered by Local-VSM. The overall
process of our web-enhanced content retrieval is depicted in
Figure 2.

Figure 2: A diagram that summarizes the overall
process of web-enhanced content retrieval.

3.2. Ranking
We formulate content retrieval as ranking the tuples with
respect to the content of an RDB, given a user query. A merit
of our approach is that any standard ranking algorithm is
applicable in the framework once the query and tuple term
vectors are computed. In this work, we adopt the cosine
similarity function as our ranking basis because of its
efficiency. We present a formal description of our ranking
function for completeness.

Let us assume that we are given N tuples the content of an
RDB. We define �� as the i-th tuple (1 ≤ � ≤ �) and q as a
user query. Next, we notate �⃗�� as a tuple term vector generated
for a Local-VSM and �⃗�	 as a web-enhanced tuple vector. As
presented in Section 3.1, we define two query vectors by
keyword phrases:
⃗�� and
⃗�	 for the slot/filler keyword and
⃗��
and
⃗�	 for the full sentence keyword. Finally, our ranking
score function is defined as follows:

����(
, ��) = � �� ∙ ��
⃗�� , �⃗���
�∈{�,�}�������������

�� !"#$%&

+ � '� ∙ ��
⃗�	, �⃗�	�
�∈{�,�}�������������

*-.#$%&

where ��, �� and '�, '� are weights, and f is a similarity
function. We set the weights empirically as (��, ��)=(0.5, 0.3)
and ('�, '�)=(0.2, 0.1) to reflect the intuition that terms appear
in the contents of the RDB with more confidence. Note that
we use the Local-VSM part for the first step whereas the
second step uses both parts to compute the ranking scores. The
function �(/⃗, 0⃗) can be any similarity function that reflects a
degree of relatedness between two vectors, /⃗ and 0⃗. This work
focuses a simple cosine similarity function as �(/⃗, 0⃗) = (/⃗ ∙
0⃗)/‖/⃗‖ ∙ ‖0⃗‖.

3.3. Relation to Other Methods
In this section, we give a qualitative analysis that illustrates
how Web-VSM resolves complex queries and also compares
our model with other approaches.

Our model accommodates the web documents to expand the
term vectors. In the context of traditional information retrieval,
the model is closely related to query expansion. Our work
differs from traditional query expansion because we expand
the tuple vector as well as the query vector. This expansion
yields improved term vectors to supplement non-matching
terms between the query and the tuple; for example,
“Manchester United” and “football” are expanded common
terms of q and t1 that do not appear in both q and t1.

The main advantage of the proposed method is that our
model needs no domain-specific knowledge to represent
semantic relatedness. In other approaches, such as full
semantic parsing and ontology-based reasoning, explicit
semantic analysis is a must, e.g., game/roster predicates,
player/club objects and isMemberOf relationships
should be explicitly modeled. Often, the explicit semantic
representation requires expensive supervision. On the other
hand, our work uses a counter approach that implicitly
represents a degree of semantic relatedness between the query
and the contents in a form of term distribution. Figure 3
demonstrates that the term distribution of semantically related
tuples is close to that of the queries.

Figure 3: Term distributions of query and tuples. Tuple
t1 is a relevant tuple of query q, but t2 is not.

4. Experiments

4.1. Experimental Setting
We applied our method to a Korean EPG dialogue system, in
which the contents database consists of 1023 tuples, each of
which is a unique TV program scheduled for broadcasting in
Korea. We collected the database over the period of a week
(January 17–23, 2011). We integrated our VSM-based content
retrieval system to the dialogue system implemented in [3]. To
obtain the web search results page, we used the API provided
by Naver1. After inspecting the contents database, we found
that some tuples have values that consist of only stop words,
e.g., “with you.” Thus, we did not remove stop words because
some stop words in Korean are necessary for our purpose.

Our goal is to evaluate how content retrieval outputs
properly. Thus, we evaluated our method on 200 queries that
were collected manually from Smart-TV users. In traditional

1 http://dev.naver.com/openapi/

Ranking

Query + slot/filler frame

Ranked list

Confident?

Computing Vector

Searching the Web

Web
documentsWeb

documents

Web-VSM

Contents
RDB

Yes

No

Web
documents

Generating
Keyword Phrase

Searching the WebSearching the Web

Computing VectorComputing Vector

Ranking

Full sentence
keyword phrase

Slot/filler
keyword phrase

Indexing

Indexing

Local-VSM

I want to watch
Jisung Park’s game.

… Manchester United
… Arsenal … English
football club …
rival … Rooney …
Jisung Park …

… Jisung Park …
South Korean …

Manchester United …
goal … 2002 World
Cup … football …

… … …

p(q) p(t1) p(t2)

ManUtd vs.
Arsenal ESPN … Chelsea vs.

Liverpool
KBS

Sports …

… Chelsea … rival …
Liverpool …

football … Stamford
Bridge … Drogba …

Suarez …

q t1 t2

1299

dialogue systems, the exact matching method could not handle
104 queries. This proportion verifies why robust content
retrieval is needed for the EPG domain dialogue system.

To evaluate the relevance of a ranked list of tuples produced
by our model, we used two standard metrics in the information
retrieval task. Precision at n (P@n) represents the number of
correct queries among the top n relevant lists divided by the
total number of queries. We also present the mean reciprocal
rank (MRR) in our result, which is the average of the
reciprocal ranks of results for a sample of queries. For both
metrics, a higher value is better. While there might be multiple
correct answers, we assume a single correct tuple for a user
query for brevity.

We also conducted a simple user test to identify the user
preference. For this test, we compared Web-VSM with Local-
VSM. An evaluation tool shows two results in random order
for when the user marks his/her preference between Local-
VSM and Web-VSM results. A total of 10 testers participated
in this experiment.

4.2. Results
Table 1 summarizes the results that were obtained. We set
‘Local-VSM’, described in Section 3, as our baseline. Also,
we considered two keyword phrases independently: using the
query vector generated by a slot/filler keyword (Key1) and by
the full sentence keyword (Key2). Both models substantially
outperform the baseline (the second and third line in Table 1).
The difference is statistically significant with the level p <
0.05 measured with the paired t-test. The significant
improvement over the Local-VSM results demonstrates the
benefits of using web documents for content retrieval with
complex queries. Interestingly, Key1 and Key2 results are not
significantly different, but additional benefits are obtained by
combining the two (the last line in Table 1). This result is
significantly better than both the Key1 and Key2 results (p <
0.05).

To inspect the effects of expanding tuple vectors, we
consider a variant of Web-VSM where we did not use web
documents to compute the expanded tuple term vector; that is,
the ranking score solely depended on �⃗�� but not on �⃗�	 . We
achieved an MRR score of 0.653, 0.656 and 0.688 for Key1,
Key2, and Key1+Key2 schemes, respectively. This result
shows that lexical terms in the contents database are also
insufficient to express the degree of semantic relatedness.

To better understand the difference between Local-VSM
and Web-VSM, we now turn to a user test evaluation. In this
experiment, a query and two top 3 lists of system A and B (A
and B are random) are shown on the screen. Then, a user can
be assessed with 4 choices: A is preferred, B is preferred, both
are acceptable, and both are unacceptable. Figure 4
summarizes the results of the preference test. In the figure, the
user favors the Web-VSM result three times as often as that of
the Local-VSM. Conversely, both systems incorrectly retrieve
the relevant contents for approximately 12% of the queries.
Because most of the errors are due to unreliable web
documents, we may need a method to select the confident web
pages. We leave this task to future work.

Table 1. Result on content retrieval for the EPG
dialogue system.

 P@1 P@5 P@10 MRR
Local-VSM 0.540 0.625 0.640 0.576
+Web-VSM (Key1) 0.695 0.785 0.810 0.739
+Web-VSM (Key2) 0.685 0.770 0.800 0.727
+Web-VSM (Key1+2) 0.730 0.820 0.845 0.775

8.2%

24.3%

55.9%

11.6%

0%

10%

20%

30%

40%

50%

60%

Local-VSM Web-VSM Both are
acceptable

Both are
unacceptable

Figure 4: Result of user preference on 200 test queries.

5. Conclusions
In this paper, we presented web-enhanced content retrieval for
information access dialogue systems. We demonstrated that
our method is beneficial for running complex queries. Our
model can capture term co-occurrence patterns to express the
degree of semantic relatedness in a simple way. Without any
semantic analysis and additional knowledge sources, our
approach achieved a significant improvement over the baseline
in the EPG dialogue system.

In future research, we plan to investigate a model that
explicitly uses discourse history and updates dialogue states
with a web-enhanced retrieval model. This approach may need
to perform a mapping of topical terms to the shallow
semantics defined by the slot/filler frame. Another interesting
direction would be to perform integration of advanced
information retrieval techniques, such as topic modeling in the
content database, to improve ranking.

6. Acknowledgements
This research was supported by the MKE (The Ministry of
Knowledge Economy), Korea, under the ITRC (Information
Technology Research Center) support program supervised by
the NIPA (National IT Industry Promotion Agency) (NIPA-
2011-C1090-1131-0009), and the Intelligent Robotics
Development Program, one of the 21st Century Frontier R&D
Programs funded by the Ministry of Knowledge Economy
(MKE).

7. References
[1] E. Levin, S. Narayanan, R. Pieraccini, K. Biatov, E. Bocchieri, G.

Di Fabbrizio, W. Eckert, S. Lee, A. Pokrovsky, M. Rahim, P.
Ruscitti, and M. Walker, “The AT&T-DARPA Communicator
Mixed-Initiative Spoken Dialogue System,” in Proc. ICSLP,
2000.

[2] C. Lee, A. Rudnicky, G. G. Lee, “Let’s Buy Books: Finding
Ebooks using Voice Search”, In Proc. IEEE workshop on SLT,
2010.

[3] C. Lee, S. Jung, S. Kim, G. G. Lee, “Example-based Dialog
Modeling for Practical Multi-domain Dialog System”, Speech
Communication 51(5), 466-484, 2009.

[4] L. Zettlemoyer and M. Collins. “Online Learning of Relaxed
CCG Grammars for Parsing to Logical Form,” In EMNLP-
CoNLL, 2007.

[5] H. Noh, C. Lee, and G. G. Lee, “Ontology-based Inference for
Information-seeking in Natural Language Dialog System”,
Proceeding of the 6pth IEEE INDIN, 2008.

[6] D. Yu, Y.-C. Ju, Y.-Y. Wang, G. Zweig, and A. Acero,
“Automated Directory Assistance System”, In Proc.
INTERSPEECH, 2007.

[7] M. L. Seltzer, Y Ju, I. Tashev, and A. Acero, “Robust Location
Understanding in Spoken Dialog Systems using Intersections”,
In Proc. INTERSPEECH, 2007.

[8] C. González-Ferreras, V. Cardeñoso-Payo, “Development and
Evaluation of a Spoken Dialog System to Access a Newspaper
Web Site,” In Proc. INTERSPEECH, 2005.

[9] S. Robertson, H. Zaragoza, and M. Taylor. “Simple BM25
extension to multiple weighted fields,” In ACM CIKM, pp. 42-
49, 2004.

1300

