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Abstract 
We consider the problem of content retrieval with complex 
queries for an information access dialogue system. Traditional 
information access dialogue systems rely on exact query 
matching and heuristic rules to find relevant content in a 
relational database. To deal with complex queries, a dialogue 
system is used to attain deep semantic processing such as full 
semantic parsing and ontology-based reasoning. However, 
these systems require a large amount of semantic annotation 
and domain expert knowledge that are often very expensive to 
obtain and thus have been limited in practice. In this paper, we 
present a simple alternative method where web-searched 
documents can contribute to enhanced vector space model-
based content retrieval. Our model captures underlying co-
occurrence patterns between the query and the contents. An 
efficient ranking algorithm is applied to retrieve the relevant 
contents. One merit of the proposed approach is that it does 
not require heavy semantic processing, and therefore, it results 
in efficient content retrieval. We demonstrate that our method 
is beneficial in an electronic program-guided dialogue system. 

Index Terms: web-enhanced content retrieval, information 
access dialogue system 

1. Introduction 
In recent years, information access dialogue systems have 
been studied to construct a user-friendly interface to retrieve 
desired information. For example, a user can query the 
dialogue system to demand air flight information [1] and to 
search books [2] or electronic programs [3]. Traditional 
dialogue systems for information access store the contents of 
domain-specific information in a relational database (RDB), 
consisting of relational tuples. Content retrieval is a key 
component of information access dialogue systems to retrieve 
the relevant contents (i.e., a tuple in the RDB) for answering a 
user’s request.  

In most RDB-based dialogue systems, content retrieval is 
carried out as exact query matching and matching with 
heuristic query expansion rules. However, these systems often 
fail to deal with complex queries. As an example, consider a 
user query to an electronic program guide (EPG) system: “I 
want to watch Jisung Park’s game.” In practice, shallow 
semantic parsing is applied to extract reliable semantic 
information, e.g., search_program(person=‘Jisung 
Park’), and the dialogue system retrieves tuples with fields 
that match the query exactly or partially. As the contents 
database contains only a limited number of structured fields, 
such as program title and broadcast hours, the system returns 
no result for this example.  

To overcome such a limitation, content retrieval is used to 
attain deep semantic processing, for instance, full semantic 
parsing [4] and ontology-based reasoning [5]. To make the 
complex query understandable, a full semantic parser might 

convert the raw sentence into first-order logic, such as 
λx.game(x) roster(x, Jisung Park). Alternatively, 
a domain-specific ontology can be used instead of an RDB to 
perform reasoning on complex user queries [5]. Despite their 
generality and expressive power, both approaches have their 
own challenges: semantic parse tree-annotated corpora and 
ontology resources are scarce and difficult to obtain. In 
addition, semantic inferences based on these approaches are 
often very expensive. Therefore, such approaches have been 
limited in practice for information access dialogue systems.  

In this paper, we propose an alternative approach to content 
retrieval that makes it feasible for our dialogue system to deal 
with complex queries. Instead of using heavy semantic 
processing, we use a vector space model (VSM) that forms a 
query and a tuple term vector. Our model accommodates web 
documents that are searched for each user query and tuple in 
the contents database to enhance the VSM with a scarcity of 
common terms. For example, the web search result for the 
phrase “Jisung Park” would contain expanded but closely 
related terms, such as “Manchester United” and “Premier 
League soccer player.” We expect that the term distribution of 
web-searched documents of the relevant tuple is close to that 
of the documents searched by the user query. We argue that 
web documents could be a valuable resource to capture 
distributional similarity between the query and the contents. 
As a ranking algorithm, we present an efficient ranking 
function that combines two VSMs. As our method requires no 
expensive semantic analysis and additional expert knowledge, 
it results in efficient context retrieval. We apply our method to 
the EPG dialogue system, in which a user can query in natural 
language to access broadcast information. In our experiment, 
we demonstrate that the resulting method achieves a mean 
reciprocal rank of 0.775, and this compares favorably with the 
0.576 shown by the baseline model. 

The remainder of this paper is structured as follows. In 
Section 2, we give background on content retrieval for 
information access dialogue systems. Section 3 presents our 
web-enhanced content retrieval model and Section 4 provides 
an empirical evaluation of the proposed method. In Section 5, 
we conclude with a discussion of future work. 

2. Content Retrieval for Information 
Access Dialogue Systems 

In this section, we present prior studies on content retrieval for 
information access dialogue systems and show challenges that 
make it possible to deal with complex user queries.  

In information access dialogue systems that are 
implemented with an RDB as their knowledge content 
container, the goal of content retrieval is to find the most 
relevant tuple or a list of relevant tuples in the RDB tables, 
given a user query in natural language. As a natural language 
query is semantically ambiguous, the dialogue system first 
attempts to parse the speech for recognition. In practice, we 
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are not always able to develop a full parser due to speech 
recognition errors and because of the characteristics of spoken 
language. Therefore, most dialogue systems apply domain-
dependent, shallow semantic parsing to extract reliable 
semantic information (e.g., the user action and a domain-
specific named entity) from the natural language query. 
Extracted information is structured as a slot/filler frame, and 
then a dialogue manager updates such a frame as a dialogue 
state with a discourse history. Traditional RDB-based dialogue 
systems implement exact matching rules of slot/filler frames, 
executing an SQL query to the contents of the RDB and using 
heuristic query expansion rules to achieve a better coverage. 
However, this method often fails to retrieve desired contents, 
in particular for complex queries. As shown in Figure 1(a), no 
match between the SQL queries and the RDB was made.  

To alleviate this problem, there are roughly three categories 
of work: full semantic parsing, ontology-based dialogue 
systems and VSM-based content retrieval. In theory, full 
semantic parsing gives us a complete logical form for the 
underlying semantics. For example, for the phrase “Jisung 
Park’s game,” a user might mean “a list of all soccer games in 
which Jisung Park is rostered,” with the first-order logic form 
λx.game(x) roster(x, Jisung Park). In practice, 
however, this approach results in low accuracy when mapping 
ambiguous lexical items to semantic concepts (e.g., from a 
possessive, “Park’s”, to a roster). In addition, this approach 
needs a large number of semantic parse tree annotations to 
learn the semantic parser.  

An ontology-based dialogue system was among the first 
applications of ontology-based reasoning to dialogue systems 
[5]. In [5], the investigators built a domain-specific ontology 
that consists of objects and their relations, representing a 
hierarchical structure of the semantic relatedness of concepts. 
For our example, “Jisung Park” is an instance of a player 
object that has an isMemberOf relationship to a club object. 
Although ontology-based reasoning is powerful, creating an 
ontology itself is challenging. 

As an alternative to expensive semantic processing, we 
consider VSM-based content retrieval. In the context of 
information retrieval, each tuple in the RDB is treated as a 
(structured) document, and then a query-tuple VSM is used to 
yield a ranked list of tuples according to their relevance to the 
query. Some of the prior work on voice search presented 
VSM-based content retrieval in this manner [6, 7].  

 

 
Figure 1: An example of content retrieval for an 
information access dialogue system in the EPG 
domain. 

There has been only a limited amount of work applying 
VSM to content retrieval for information access dialogue 
systems, e.g. [8]. We construct a query term vector using the 
slot/filler frame (or natural language query) and a tuple term 
vector. Next, we assume that the distance between the query 
and the document vectors has a degree of relatedness. 
However, a complex query still remains a challenge. As shown 
in Figure 1(b), there is no overlapping term between the query 
vector and the tuple vector, so that the similarity score would 
be 0. This phenomenon occurs because both the query and the 
contents tuple tend to be too short to represent their meanings. 
Accordingly, we must bridge the gap between them. To 
address this problem, we will introduce a simple, but effective, 
method that uses web documents as additional knowledge. 

3. Web-enhanced Content Retrieval 
Our key idea for robust content retrieval is to use a collection 
of web-searched documents as an additional resource to 
capture underlying co-occurrence patterns between the query 
and the tuple. In this section, we implement our idea by 
extending the conventional VSM. 

3.1. Model 
Our content retrieval model consists of two VSMs: local and 
web-enhanced VSM. A local VSM (Local-VSM) forms a 
query vector from the slot/filler frame and a tuple vector from 
the tuple in the contents of the RDB. As both the frame and 
the tuple are structured, we can construct a structured term 
vector to represent structural information and can also 
consider a structural ranking algorithm, for example, BM25f 
[9]. As stated in [9], it is often expensive to tune the parameter 
(or weight) for each structured field. In this work, we assume 
an unstructured term vector that contains only lexical items in 
the frame and the tuple. As a term weight, we use a standard 
tf.idf scheme, in which we compute the term frequency and the 
inverse document (i.e., tuple) frequency. For example, Figure 
1(b) shows a query and a tuple term vector for a Local-VSM. 
We omit the idf score and assume 10 terms in the first tuple for 
clarity. Unfortunately, Local-VSM does not make a significant 
value for a pair of vectors in our example, because there is no 
matched term. 

A web-enhanced VSM (Web-VSM) is used to resolve this 
non-matching term problem. We begin by illustrating how the 
tuple term vector takes advantage of web documents. For each 
tuple in a database, we use attribute values (that is, lexical 
terms described above) as keyword phrases for the web search 
engine. Next, we construct a tuple vector that consists of a 
term weight computed over the obtained documents. To make 
our model more reliable and to accelerate ranking, we use a 
simple term selection technique; we exclude terms whose idf 
does not exceed a fixed threshold value (in our experiment, 
0.3). We index all such web-enhanced tuple vectors in advance.  

A query term vector in Web-VSM can be built in a similar 
way. In a preliminary experiment, we found, however, that the 
slot/filler frame is inaccurate when our shallow semantic 
parser takes a complex query. This result occurs because the 
complex query is more ambiguous. To avoid generating a 
deficient keyword phrase, we also consider all terms in the 
natural language query as a keyword phrase. For example, we 
use both “Jisung Park” and “I want to watch Jisung Park’s 
game” as the keyword phrase. We construct two separate 
query term vectors using slot/filler and full sentence keyword 
phrases.  

A premise in our web-enhanced content retrieval is that web 
documents are beneficial for accommodating expanded terms 
that may be closely related to terms appearing in the query and 

No Program 
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1 ManUtd vs. 
Arsenal ESPN 17:00 –

20:00 …
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KBS 
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14:00 –
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… ... ... … …
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Contents RDB
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Select * from `tv_schedule` where 
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SQL query
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Term vector
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(ESPN,0.1), … >

Term vector

Not match Not match
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tuple. However, searching the web might increase the 
overhead needed to process all of the queries. To alleviate this 
problem, we use a two-step approach; we first do content 
retrieval with a Local-VSM; then, we search the web to 
compute a query vector for the Web-VSM when the previous 
retrieval stage produces no result or when all tuples do not 
exceed the threshold. Consequently, this process reduces the 
cost of searching the web, and Web-VSM focuses on complex 
queries that are not covered by Local-VSM. The overall 
process of our web-enhanced content retrieval is depicted in 
Figure 2. 

 

 
Figure 2: A diagram that summarizes the overall 
process of web-enhanced content retrieval.  

3.2. Ranking 
We formulate content retrieval as ranking the tuples with 
respect to the content of an RDB, given a user query. A merit 
of our approach is that any standard ranking algorithm is 
applicable in the framework once the query and tuple term 
vectors are computed. In this work, we adopt the cosine 
similarity function as our ranking basis because of its 
efficiency. We present a formal description of our ranking 
function for completeness. 

Let us assume that we are given N tuples the content of an 
RDB. We define ��  as the i-th tuple (1 ≤ � ≤ �) and q as a 
user query. Next, we notate �⃗��   as a tuple term vector generated 
for a Local-VSM and �⃗�	 as a web-enhanced tuple vector. As 
presented in Section 3.1, we define two query vectors by 
keyword phrases: 
⃗��  and 
⃗�	 for the slot/filler keyword and 
⃗��  
and 
⃗�	  for the full sentence keyword. Finally, our ranking 
score function is defined as follows: 

 


����(
, ��) = � �� ∙ ��
⃗�� , �⃗���
�∈{�,�}�������������

�� !"#$%&

+ � '� ∙ ��
⃗�	, �⃗�	�
�∈{�,�}�������������

*-.#$%&

 

 

where ��, ��  and '�, '�  are weights, and f is a similarity 
function. We set the weights empirically as (��, ��)=(0.5, 0.3) 
and ('�, '�)=(0.2, 0.1) to reflect the intuition that terms appear 
in the contents of the RDB with more confidence. Note that 
we use the Local-VSM part for the first step whereas the 
second step uses both parts to compute the ranking scores. The 
function �(/⃗, 0⃗) can be any similarity function that reflects a 
degree of relatedness between two vectors, /⃗ and 0⃗. This work 
focuses a simple cosine similarity function as �(/⃗, 0⃗) = (/⃗ ∙
0⃗)/‖/⃗‖ ∙ ‖0⃗‖.  

3.3. Relation to Other Methods 
In this section, we give a qualitative analysis that illustrates 
how Web-VSM resolves complex queries and also compares 
our model with other approaches.  

Our model accommodates the web documents to expand the 
term vectors. In the context of traditional information retrieval, 
the model is closely related to query expansion. Our work 
differs from traditional query expansion because we expand 
the tuple vector as well as the query vector. This expansion 
yields improved term vectors to supplement non-matching 
terms between the query and the tuple; for example, 
“Manchester United” and “football” are expanded common 
terms of q and t1 that do not appear in both q and t1. 

The main advantage of the proposed method is that our 
model needs no domain-specific knowledge to represent 
semantic relatedness. In other approaches, such as full 
semantic parsing and ontology-based reasoning, explicit 
semantic analysis is a must, e.g., game/roster predicates,  
player/club objects and isMemberOf relationships 
should be explicitly modeled. Often, the explicit semantic 
representation requires expensive supervision. On the other 
hand, our work uses a counter approach that implicitly 
represents a degree of semantic relatedness between the query 
and the contents in a form of term distribution. Figure 3 
demonstrates that the term distribution of semantically related 
tuples is close to that of the queries. 

 

 
Figure 3: Term distributions of query and tuples. Tuple 
t1 is a relevant tuple of query q, but t2 is not. 

4. Experiments 

4.1. Experimental Setting 
We applied our method to a Korean EPG dialogue system, in 
which the contents database consists of 1023 tuples, each of 
which is a unique TV program scheduled for broadcasting in 
Korea. We collected the database over the period of a week 
(January 17–23, 2011). We integrated our VSM-based content 
retrieval system to the dialogue system implemented in [3]. To 
obtain the web search results page, we used the API provided 
by Naver1. After inspecting the contents database, we found 
that some tuples have values that consist of only stop words, 
e.g., “with you.” Thus, we did not remove stop words because 
some stop words in Korean are necessary for our purpose.  

Our goal is to evaluate how content retrieval outputs 
properly. Thus, we evaluated our method on 200 queries that 
were collected manually from Smart-TV users. In traditional 
                                                                 
 
1 http://dev.naver.com/openapi/ 
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dialogue systems, the exact matching method could not handle 
104 queries. This proportion verifies why robust content 
retrieval is needed for the EPG domain dialogue system. 

To evaluate the relevance of a ranked list of tuples produced 
by our model, we used two standard metrics in the information 
retrieval task. Precision at n (P@n) represents the number of 
correct queries among the top n relevant lists divided by the 
total number of queries. We also present the mean reciprocal 
rank (MRR) in our result, which is the average of the 
reciprocal ranks of results for a sample of queries. For both 
metrics, a higher value is better. While there might be multiple 
correct answers, we assume a single correct tuple for a user 
query for brevity.  

We also conducted a simple user test to identify the user 
preference. For this test, we compared Web-VSM with Local-
VSM. An evaluation tool shows two results in random order 
for when the user marks his/her preference between Local-
VSM and Web-VSM results. A total of 10 testers participated 
in this experiment. 

4.2. Results 
Table 1 summarizes the results that were obtained. We set 
‘Local-VSM’, described in Section 3, as our baseline. Also, 
we considered two keyword phrases independently: using the 
query vector generated by a slot/filler keyword (Key1) and by 
the full sentence keyword (Key2). Both models substantially 
outperform the baseline (the second and third line in Table 1). 
The difference is statistically significant with the level p < 
0.05 measured with the paired t-test. The significant 
improvement over the Local-VSM results demonstrates the 
benefits of using web documents for content retrieval with 
complex queries. Interestingly, Key1 and Key2 results are not 
significantly different, but additional benefits are obtained by 
combining the two (the last line in Table 1). This result is 
significantly better than both the Key1 and Key2 results (p < 
0.05). 

To inspect the effects of expanding tuple vectors, we 
consider a variant of Web-VSM where we did not use web 
documents to compute the expanded tuple term vector; that is, 
the ranking score solely depended on �⃗��  but not on �⃗�	 . We 
achieved an MRR score of 0.653, 0.656 and 0.688 for Key1, 
Key2, and Key1+Key2 schemes, respectively. This result 
shows that lexical terms in the contents database are also 
insufficient to express the degree of semantic relatedness.  

To better understand the difference between Local-VSM 
and Web-VSM, we now turn to a user test evaluation. In this 
experiment, a query and two top 3 lists of system A and B (A 
and B are random) are shown on the screen. Then, a user can 
be assessed with 4 choices: A is preferred, B is preferred, both 
are acceptable, and both are unacceptable. Figure 4 
summarizes the results of the preference test. In the figure, the 
user favors the Web-VSM result three times as often as that of 
the Local-VSM. Conversely, both systems incorrectly retrieve 
the relevant contents for approximately 12% of the queries. 
Because most of the errors are due to unreliable web 
documents, we may need a method to select the confident web 
pages. We leave this task to future work. 

Table 1. Result on content retrieval for the EPG 
dialogue system.  

 P@1 P@5 P@10 MRR 
Local-VSM 0.540 0.625 0.640 0.576 
+Web-VSM (Key1) 0.695 0.785 0.810 0.739 
+Web-VSM (Key2) 0.685 0.770 0.800 0.727 
+Web-VSM (Key1+2) 0.730 0.820 0.845 0.775 
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24.3%

55.9%

11.6%

0%

10%

20%

30%

40%

50%

60%

Local-VSM Web-VSM Both are 
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Both are 
unacceptable  

Figure 4: Result of user preference on 200 test queries.  

5. Conclusions 
In this paper, we presented web-enhanced content retrieval for 
information access dialogue systems. We demonstrated that 
our method is beneficial for running complex queries. Our 
model can capture term co-occurrence patterns to express the 
degree of semantic relatedness in a simple way. Without any 
semantic analysis and additional knowledge sources, our 
approach achieved a significant improvement over the baseline 
in the EPG dialogue system. 

In future research, we plan to investigate a model that 
explicitly uses discourse history and updates dialogue states 
with a web-enhanced retrieval model. This approach may need 
to perform a mapping of topical terms to the shallow 
semantics defined by the slot/filler frame. Another interesting 
direction would be to perform integration of advanced 
information retrieval techniques, such as topic modeling in the 
content database, to improve ranking. 
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