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Abstract
We propose two approaches for improving the objective func-
tion for the deep neural network (DNN) frame-level training
in large vocabulary continuous speech recognition (LVCSR).
The DNNs used in LVCSR are often constructed with an out-
put layer with softmax activation and the cross-entropy objec-
tive function is always employed in the frame-leveling train-
ing of DNNs. The pairing of softmax activation and cross-
entropy objective function contributes much in the success of
DNN. The first approach developed in this paper improves the
cross-entropy objective function by boosting the importance of
the frames for which the DNN model has low target predic-
tions (low target posterior probabilities) and the second one
considers jointly minimizing the cross-entropy and maximizing
the log posterior ratio between the target senone (tied-triphone
states) and the most competing one. Experiments on Switch-
board task demonstrate that the two proposed methods can pro-
vide 3.1% and 1.5% relative word error rate (WER) reduction ,
respectively, against the already very strong conventional cross-
entropy trained DNN system.

Index Terms: deep neural network, cross-entropy, boosting dif-
ficult samples, log posterior ratio

1. Introduction
The recent success of context dependent deep neural network
hidden Markov models (CD-DNN-HMMs) in automatic speech
recognition (ASR) [1] draws a lot of attention. It has been
shown that the CD-DNN-HMMs outperform traditional Gaus-
sian mixture model (GMM) HMMs with more than 10% rela-
tive error reduction in various tasks and data sets [2, 3, 4, 5, 6, 7,
8]. Comparing to traditional artificial neural networks (ANNs)
used in ASR [9, 10], recent DNNs have much wider and deeper
hidden layers, often are constructed with a large softmax out-
put layer to directly model senones [11] and always employ
cross-entropy as the objective function in frame-leveling train-
ing. These differences make the foundation of DNN’s success.

Various aspects of DNN are explored by researchers. In
[6, 12] the second-order optimization method called ”Hessian-
free” for DNN training is investigated; in [13, 14, 15] different
non-linear activation function in hidden layers are employed
to for better DNN formulation; sequence-level discriminative
training of DNN [7] also shows nice ability in improving the
DNN’s discriminative power. One thing worth noticing is that
the frame-level training is an essential part of recent DNN sys-
tems, and even sequence-level discriminative training needs a
good frame-level trained DNN to start with, however, there is
rare research done for improving this important part.

In this paper, to improve the frame-level objective function
of DNN training, we proposed two frameworks. Inspired by

the intuitive idea that people always learn more from difficult
problems in which they are prone to make mistakes, the first
approach emphasizes the difficult frames with low target pos-
terior probabilities and deemphasizes the importance of those
frames already well predicted by the DNN. The second method
jointly minimizes the cross-entropy and maximizes the log
posterior ratio between the target senone (tied-triphone states)
[11, 4] and the most competing one. Maximizing the proba-
bility ratio between the target and the most competing senone
enlarges the margin between the right and the most competing
prediction, thus helps to increase DNN model’s generalization
power and prediction robustness. The experiments on Switch-
board task demonstrate that the proposed two methods can pro-
vide 3.1% and 1.5% relative word error reduction (WER), re-
spectively, against the already very strong conventional cross-
entropy based DNN system. Those WER reductions seem not
that significant, but as reported in [16], Switchboard task is a
very challenging one, even with speaker adaptation, only 2.7%
relative WER reduction is obtained. Therefore, the proposed
frameworks do improve the conventional cross-entropy based
frame-level training of DNN in a non-neglectable manner.

The rest of the paper is organized as follows. In Section 2,
we review the frame-level DNN training with the cross-entropy
objective function. In Section 3, the proposed objective func-
tions for frame-level DNN training are described. The exper-
imental results are reported in Section 4. The conclusion and
future plan are given in Section 5.

2. Frame-level Cross-entropy Objective
Function for DNN training

In this work, the input of the DNN was a splice of a central
frame (whose label is that for the splice) and its n context
frames on both left and right sides, e.g., n = 10. The hid-
den layers were constructed by sigmoid units and output layer
is a softmax layer. The basic structure of a deep neural network
is shown in Fig. 1. Specifically, the values of the nodes can be
expressed as,

xi =

{
W1o

t + b1, i = 1

Wiy
i + bi, i > 1

, (1)

yi =

{
sigmoid(xi), i < n

softmax(xi), i = n
, (2)

where W1,Wi are the weight matrices and b1,bi are the bias
vectors; n is the total number of the hidden layers and both the
sigmoid, and softmax functions are element-wise operations.
The vector xi corresponds to pre-nonlinearity activations, and
yi and yn are the neuron vectors at the ith hidden layer and the
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output layer, respectively. The softmax outputs were considered
as an estimate of the senone posterior probability:,

p(Cj |ot) = yn
t (j) =

exp(xn
t (j))∑

i

exp(xn
t (i))

, (3)

where Cj represents the jth senone and yn(j) is the jth ele-
ment of yn in Fig. 1.

...W1 W2 W3 Wn

x2
y1 y2

xn
yn
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Figure 1: Structure of a deep neural network: Wi is weight
matrix at the ith layer, note that the bias terms are omitted for
simplicity.

DNN is trained by maximizing the log posterior probability
over the training frames. This is equivalent to minimizing the
cross-entropy objective function. Let X be the whole training
set which contains N frames, i.e. o1:N ∈ X , then the loss with
respect to. X is given by,

L1:N = −
N∑
t=1

J∑
j=1

dt(j) log p(Cj |ot), (4)

where p(Cj |ot) is defined in Eq. (3); dt is the label vector of
frame t. In real practices of DNN systems, the label vector dt

is often obtained by a forced alignment by an existing system
resulting in only the target entry that is equal to 1. Thus, a
simplified loss function is obtained:

L1:N = −
N∑
t=1

log p(Cl|ot)

= −
N∑
t=1

logyn
t (l),

(5)

Where Cl is target senone indicated by the forced alignment.
The objective function is minimized by using error back

propagation [17] which is a gradient-descent based optimiza-
tion method developed for neural networks. Specifically, taking
partial derivatives of the objective function with respect to the
pre-nonlinearity activations of output layer xn, the error vector
to be backpropagated to the previous hidden layers is generated:

εnt =
∂L1:N

∂xn
= yn

t − dt, (6)

the backpropagated error vector at previous hidden layer is,

εit = WT
i+1ε

i+1
t ∗ yi ∗

(
1− yi

)
, i < n (7)

where ∗ denotes element-wise multiplication. With the error
vectors at certain hidden layers, the gradient over the whole
training set with respect to the weight matrix Wi is given by

∂L1:N

∂Wi
= yi−1

1:N (εi1:N )T , (8)

Note that in above equation, both yi−1
1:N and εi1:N are matri-

ces, which is formed by concatenating vectors corresponding
to all the training frames from frame 1 to N , i.e. εi1:N =
[εi1, . . . , ε

i
t, . . . , ε

i
N ] . The batch gradient descent updates the

parameters with the gradient in Eq. (8) only once after each
sweep through the whole training set and in this way paralleliza-
tion can be easily conducted. However, stochastic gradient de-
scent (SGD) [18] usually works better in practice where the true
gradient is approximated by the gradient at a single frame t, i.e.
yi−1
t (εit)

T , and the parameters are updated right after seeing
each frame. The compromise between the two, the mini-batch
SGD [19], is more widely used, as the reasonable size of mini-
batches makes all the matrices fit into GPU memory, which
leads to a more computationally efficient learning process. In
this work, we use mini-batch SGD to update the parameters.

Training a neural network directly from the randomly ini-
tialized parameters usually results in a poor local optimum
when performing error back propagation, especially when the
neural network is deep [20]. To cope with this, pre-training
methods have been proposed for a better initialization of the pa-
rameters [21]. Pre-training grows the neural network layer by
layer without using the label information. Treating each pair of
layers in the network as a restricted Boltzmann machine (RBM),
layers of the neural network can then be trained using an objec-
tive criterion called contrastive divergence [21].

3. Improving Cross-entropy Objective
Function

3.1. Boosted cross-entropy

Inspired by the intuitive idea that people always learn more from
difficult problems in which they are prone to make mistakes, we
want our DNN to learn more from the “difficult frames” whose
label the DNN model has difficulty in predicting correctly (that
is indicated by a low target posterior probabilities p(Cl|ot)).
To achieve this, we formulate the new objective function by
adding a weighting term to the cross-entropy objective function
to boost the difficult frames as in Eq. (9).

Lboosted
1:N = −

N∑
t=1

(1− p(Cl|ot)) log p(Cl|ot)

= −
N∑
t=1

(1− yn
t (l)) logy

n
t (l),

(9)

By adding the weighting term (1−yn
t (l)), the frames with

smaller yn
t (l) (which can be interpreted as prediction correct-

ness of the target senone) are emphasized.
Taking partial derivatives of the objective function with re-

spect to the pre-nonlinearity activations of output layer xn, the
error vector to be backpropagated to the previous hidden layers
is,

εnt =
∂Lboosted

1:N

∂xn
= (1− yn

t (l)− yn
t (l) logy

n
t (l))(y

n
t − dt)

= ft(y
n
t − dt),

(10)

where ft = 1− yn
t (l)− yn

t (l) logy
n
t (l).

Comparing Eq. (10) with Eq. (7), there is a scaling factor
ft in the new formulation. From the viewpoint of backpropa-
gated error vectors, the importance of each frame is scaled by
the factor ft referred as importance factor in this paper.
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Figure 2: Shape of the importance factor ft with respect to
yn
t (l) (0 ≤ yn

t (l) ≤ 1) with different boosting order α.

To extend this framework, we want to control the degree
of emphasis that is laid on the difficult frames. This is done
by letting the order of the weighting term (1 − yn

t (l)) to be a
variable parameter α called boosting order in this paper,

Lboosted
1:N = −

N∑
t=1

(1− yn
t (l))

α logyn
t (l), (11)

Correspondingly, the error vector to be backpropagated to
the previous hidden layers becomes,

εnt =
∂Lboosted

1:N

∂xn

= (1− yn
t (l))

α−1(1− yn
t (l)− αyn

t (l) logy
n
t (l))(y

n
t − dt)

(12)

The importance factor ft becomes,

ft = (1− yn
t (l))

α−1(1− yn
t (l)− αyn

t (l) logy
n
t (l)) (13)

Fig. 2 shows the shape of the importance factor ft with re-
spect to yn

t (l) (0 ≤ yn
t (l) ≤ 1) with different boosting order

α. From the figure, we can find that when yn
t (l) is approaching

1, ft approaches 0, which means the importance of the corre-
sponding frame falls when the prediction correctness grows up;
when yn

t (l) becomes smaller, which indicates DNN has diffi-
culty in predicting the associated frame correctly, that particular
frame’s importance trends to increase. It can also be found that
generally the higher α is, the more emphasis laid on the difficult
frames. When α = 0, the importance factor ft becomes a con-
stant as in Fig. 2, and the proposed objective function reduces
to the conventional cross-entropy.

3.2. Cross-entropy with Log Posterior Ratio

When a statistical model is trained to discriminate data sam-
ples in different classes, it is always wanted that prediction
probability of the target class are larger than the competing
classes, especially the most competing class, in a significant
way, thus, increase the prediction robustness of the model. This
concept is widely used in GMM discriminative training, e.g.,

minimum classification error (MCE) [22] and soft margin esti-
mation (SME) [23, 24]. In the case of DNN acoustic models for
LVCSR, we want the log posterior ratio between the target and
the most competing senone to be large. In order to achieve this,
we design the objective function to jointly minimize the cross-
entropy and maximize the log posterior ratio between the target
senone and the most competing one as in Eq. (14),

Lratio
1:N = −

N∑
t=1

(λ(log p(Cl|ot)− log p(Cm|ot)) + log p(Cl|ot))

= −
N∑
t=1

(λ(logyn
t (l)− logyn

t (m)) + logyn
t (l)),

(14)

Where, Cl is the target senone and Cm is the most com-
peting senone defined as the senone with the largest poste-
rior p(Cm|ot) besides the target senone. (log p(Cm|ot) −
log p(Cl|ot)) is the log posterior ratio term and logyn

t (l) is the
negative cross-entropy term. λ ≥ 0 here is a factor controlling
the balance between the log posterior ratio and cross-entropy.

Taking partial derivatives of the objective function with re-
spect to the pre-nonlinearity activations of output layer xn, the
error vector to be backpropagated to the previous hidden layers
is,

εnt =
∂Lratio

1:N

∂xn
= yn

t − rt, (15)

Where rt is the revised label vector of frame t. All the entries of
rt are zero except the entry for the target senone rt(l) = 1 + λ
and the entry for the most competing senone rt(m) = −λ.

Comparing Eq. (15) with Eq. (7), the difference occurs be-
tween dt and rt. From the viewpoint of the backpropagated
error vector εnt , the extra error −λ in the target entry and the
extra error λ in the most competing entry, enlarge the margin
between the right and the most competing prediction, thus helps
to increase DNN model’s generalization power and prediction
robustness. When λ = 0, there is no extra error to be back-
propagated and the proposed objective function reduces to the
conventional cross-entropy.

4. Experimental Results and Analysis
In this paper, we conduct the experiments on the 109 hour sub-
set of the Switchboard conversational telephone speech task
in the Kaldi environment [25]. The first 4k utterances from
the 300 hour Switchboard-1 Release 2 (LDC97S62) [26] data
form our development set, and the training set is consisted of
the next 100K utterances. The Switchboard part of Hub5 ’00
(LDC2002S09) [27] data serves as our testing set. The trigram
language model (LM) is trained on 3M words of the Switch-
board conversational telephone speech transcripts.

The feature used to train the DNN is the Kaldi’s standard
40 dimensional “linear discriminant analysis(LDA) +
single semitied covariance(STC)+fMLLR” feature with
zero-mean and unit-variance normalization which is same with
[7]. The final input to the DNN is an 11 frame (5 frames on each
side of the current frame) context window of the 40 dimensional
features. The DNN is constructed with 5 hidden layers. Each
hidden layer has 2048 neurons. The output softmax layer has
2979 output units (according to 2979 senones).

The following scheme is used for training the DNN: the
DNN is initialized with stacked restricted Boltzmann machines
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Table 1: Testing WER for boosted cross-entropy objective func-
tion with different boosting order α

α 0 1 2 4

WER 19.2% 18.7% 18.6% 18.8%

Table 2: Testing WER for the joint cross-entropy/log-posterior-
ratio objective function with different controlling factor λ

λ 0 1e-03 2e-03 4e-03

WER 19.2% 18.9% 18.9% 19.1%

(RBMs) by using layer by layer generative pre-training [21].
An initial learning rate of 0.01 is used to train the Gaussian-
Bernoulli RBM and a learning rate of 0.4 is applied to the
Bernoulli-Bernoulli RBMs. Then the network is discrimina-
tively trained with different frame-level objective functions us-
ing backpropagation. All the utterances and frames are random-
ized before being fed in the DNN. The mini-batch size is set to
256 and the initial learning rate is set to 0.008. After each train-
ing epoch, we validate the frame accuracy on the development
set, if the improvements is less than 0.5%, we shrink the learn-
ing rate by the factor of 0.5. The training process is stopped
after the frame accuracy improvement is less than 0.1%. Gen-
eral purpose graphics processing units (GPGPUs) are utilized to
accelerate both the training and pre-training processes.

Table 1 shows the testing WER results for the proposed
boosted cross-entropy objective function with different boost-
ing order α. α = 0 is the case that the plain cross-entropy
objective function is used. With a boosting order α = 2, a
relative WER reduction of 3.1% is achieved against the plain
cross-entropy trained DNN. According to Fig. 3 and Table 1, it
can be found that the proposed boosted cross-entropy objective
function gets better testing WER with lower training and devel-
opment frame-accuracy when comparing with the plain cross-
entropy. This phenomenon is reasonable because the plain
cross-entropy which treats each frame equally is more directly
related to overall frame accuracy, while the proposed boosted
cross-entropy objective function might not do well in enhanc-
ing the overall training frame accuracy but does help make some
difficult and crucial frames be predicted correctly, thus, reduces
the testing WER.

Table 2 shows the WER results for the proposed joint
cross-entropy/log-posterior-ratio objective function with differ-
ent controlling factor λ. Here λ = 0 means the joint cross-
entropy/log-posterior-ratio objective function reduces to plain
cross-entropy objective function. With λ=1e-03 or 2e-03, a
relative WER reduction of 1.5% is achieved against the plain
cross-entropy. From Fig. 3, it can be observed that the pro-
posed joint cross-entropy/log-posterior-ratio objective function
achieve higher frame accuracy in the development set with a
lower training frame accuracy against the plain cross-entropy.
Usually, this phenomenon means better dealing with the over-
fitting problem and better robustness of a model. The en-
larged log posterior ratio between the target and most compet-
ing senone by the proposed objective function brings stronger
generalization power to DNN model and helps to improve the
testing WER in the end.

5. Conclusion and Future Work
In this paper, we have proposed two frameworks to improve the
objective function of DNN frame-level training in LVCSR. The
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Figure 3: Frame Accuracy on Training and Development set
with 3 different objective functions in the last 5-7 training
epochs. For boosted cross-entropy, the boosting order α = 2;
for the joint cross-entropy/log-posterior-ratio, λ=1e-03. The
specific value of α and λ is chosen to make sure the frame ac-
curacy curve for each objective function is corresponding to the
best case in term of testing WER.

basic idea behind the first approach, “boosted cross-entropy”, is
to “learn more from the difficult frames which the DNN model
can’t correctly predict”; the second “joint cross-entropy/log-
posterior-ratio” approach enlarges the margin between right and
most competing prediction so as to improve DNN model’s gen-
eralization power and prediction robustness. Experiments on
Switchboard task demonstrate that the proposed two frame-
works can provide 3% and 1.5% relative word error reduction
(WER), respectively, against the already very strong conven-
tional cross-entropy trained DNN system.

The potential of the frame-level objective function is still far
from being exploited. We believe deeper investigation on the
proposed two frameworks will yield more interesting results,
and the fusion of these two frameworks is worth trying. At the
same time, designing more discriminative frame-level objective
function through different ways other than the proposed ones
can also be promising and we also want to incorporate the idea
in this paper into sequence-level discriminative training.
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