AUTOMATIC DETECTION OF OBSTRUCTIVE SLEEP APNEA USING SPEECH SIGNAL ANALYSIS

Oren Elisha
Dr. Yaniv Zigel
Prof. Ariel Tarasiuk

Department of Bio-medical engineering. Ben-Gurion university of the Negev (Israel).
Outline

• Background – what is OSA?
• OSA and speech.
• Methods
• Results
• Conclusions
• Future work
Background – what is OSA?

Definition: Episodes of complete and/or partial cessation of breathing during sleep.

AHI: apnea hypopnea index
Background – what is OSA?

OSA consequences:

- Normal heart
- Hypertensive heart
- Thickening in walls of ventricles
- Car accident
- Brain with highlighted area

Automatic detection of obstructive sleep apnea using speech signal analysis
Background – Diagnosis

OSA diagnosis today:

The “gold standard” is PSG.

- Overnight stay at a sleep lab.
- Connected the numerous electrodes and medical devices.
- Expensive and time consuming.
- Uncomfortable.

Automatic detection of obstructive sleep apnea using speech signal analysis.
Goals

Develop a non-invasive, easy to use, available tool for initial screening of potential OSA patients using speech signals analysis.
Anatomical abnormalities associated with OSA:

- Narrowing of the upper airway.
- Softer soft tissues.
- Coupling of the oral and nasal cavities.

Automatic detection of obstructive sleep apnea using speech signal analysis.
Methods

Two stages computer based diagnosing system:
1. Automatic detection of vowels and nasal phonemes from fluent speech.
2. Classification system based on fusing 7 GMM classifiers.

All subjects are “potential” OSA patients.
All subjects diagnosed in sleep clinic.

Recording, Creating data base

Stage 1
Automatic phoneme recognition

Stage 2
OSA\non-OSA classification

Automatic detection of obstructive sleep apnea using speech signal analysis
Elongated utterance of vowels /a/, /i/, /u/, /e/, /o/.

Long sentences containing the mentioned vowels.

Short yes or no question ending with a vowel.

Individual words.

Short sentences containing nasal phonemes

Automatic detection of obstructive sleep apnea using speech signal analysis
Automatic detection of obstructive sleep apnea using speech signal analysis

Automatic phoneme recognition

OSA\non-OSA classification

Data base

Vocal tract length normalization by $\alpha = 1.3$

Frequency [Hz]

Amplitude
Automatic detection of obstructive sleep apnea using speech signal analysis

Methods – training stage 2

(OSA \ non-OSA classification)

1. Framed speech signals
2. Feature extraction
3. Feature selection (SFFS)
4. Model Training
5. 7 OSA Models
6. 7 Non-OSA Models
7. Calculate the relative weight of each classifier
8. Weighted score

Data base

Automatic phoneme recognition

OSA\non-OSA classification
Methods - Validation

Automatic detection of obstructive sleep apnea using speech signal analysis
Experimental setup

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>No. of subjects</th>
<th>Age</th>
<th>AHI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-OSA</td>
<td>17</td>
<td>46.23 ± 13.7</td>
<td>5.78 ± 2.5</td>
</tr>
<tr>
<td>OSA</td>
<td>70</td>
<td>56.87 ± 13.04</td>
<td>25.74 ± 14.9</td>
</tr>
</tbody>
</table>

Automatic detection of obstructive sleep apnea using speech signal analysis
Results – stage 1

<table>
<thead>
<tr>
<th>True label</th>
<th>/a/</th>
<th>/e/</th>
<th>/i/</th>
<th>/o/</th>
<th>/u/</th>
<th>/m+/n/</th>
<th>Unvoiced and silence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/a/</td>
<td>70</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>/e/</td>
<td>7</td>
<td>73</td>
<td>15</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>/i/</td>
<td>1</td>
<td>8</td>
<td>67</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>/o/</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>72</td>
<td>13</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>/u/</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>61</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>/m+/n/</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>8</td>
<td>71</td>
<td>2</td>
</tr>
<tr>
<td>Unvoiced and silence</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>13</td>
<td>13</td>
<td>89</td>
</tr>
</tbody>
</table>
Results – stage 2

<table>
<thead>
<tr>
<th></th>
<th>System A – manual segmentation</th>
<th>System B – automatic segmentation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>true label OSA</td>
<td>true label non-OSA</td>
</tr>
<tr>
<td>classified as OSA</td>
<td>91.66%</td>
<td>8.33%</td>
</tr>
<tr>
<td>classified as non-OSA</td>
<td>8.33%</td>
<td>91.66%</td>
</tr>
</tbody>
</table>
Conclusions

• We established that initial screening of potential OSA patients is possible by analyzing patients’ speech signals.

• The fusion of 7 independent classifiers into one system was proven efficient.

• Automatic segmentation reduces the system’s performances but is essential for making the system available for doctors.
Future work

• Increase data base.
• Examine other classifiers (GMM – UBM – SVM).
• Fit a SVR based regression model for estimation of OSA severity.
AUTOMATIC DETECTION OF OBSTRUCTIVE SLEEP APNEA USING SPEECH SIGNAL ANALYSIS

Thank you for listening
Questions?

Oren Elisha
Dr. Yaniv Zigel
Prof. Ariel Tarasiuk