Sixth European Conference on Speech Communication and Technology

Budapest, Hungary
September 5-9, 1999

A Hybrid Approach to Spoken Dialogue Understanding: Prosody, Statistics and Partial Parsing

Elmar Nöth, Jürgen Haas, Volker Warnke, Florian Gallwitz, Manuela Boros (1)

Chair for Pattern Recognition, University of Erlangen-Nuremberg, Erlangen, Germany
(1) Bavarian Research Center for Knowledge Based Systems (FORWISS), Erlangen, Germany

Linguistic processing in spoken dialogue systems has to be robust against a large number of phenomena such as recognizer errors, spontaneous speech phenomena and out-of-vocabulary (OOV) words. A commonly used solution to this problem is partial parsing, that aims at detecting only parts of sentences/utterances that are vital for the respective task of the parser. In our paper we present a framework for robust linguistic processing in our spoken dialogue system EVAR for train timetable information. The linguistic processor combines partial parsing with prosody and statistical concept prediction. Parsing is restricted to the detection and analysis of those parts of an utterance that are crucial for its understanding by the system. In order to accomplish this task most efficiently, the parser operates not only on word lattices as delivered by the recognizer, but also on prosodic information and statistical concept prediction.

Full Paper (PDF)   Gnu-Zipped Postscript

Bibliographic reference.  Nöth, Elmar / Haas, Jürgen / Warnke, Volker / Gallwitz, Florian / Boros, Manuela (1999): "A hybrid approach to spoken dialogue understanding: prosody, statistics and partial parsing", In EUROSPEECH'99, 2019-2022.