ISCA Archive ICSLP 1998
ISCA Archive ICSLP 1998

Grammar fragment acquisition using syntactic and semantic clustering

Kazuhiro Arai, Jeremy H. Wright, Giuseppe Riccardi, Allen L. Gorin

A new method is proposed for automatically acquiring Fragments to understand fluent speech. The goal of this method is to generate a collection of Fragments, each representing a set of syntactically and semantically similar phrases. First, phrases frequently observed in the training set are selected as candidates. Each candidate phrase has three associated probability distributions of : following contexts, preceding contexts, and associated semantic actions. The similarity between candidate phrases is measured by applying the Kullback-Leibler distance to these three probability distributions. Candidate phrases that are close in all three distances are clustered into a Fragment. Salient sequences of these Fragments are then automatically acquired, and exploited by a spoken language understanding to classify calls in AT&T's ``How May I Help You?'' task. The experimental results show that the average and maximum improvements in call-type classification performance of 2.2% and 2.8% are respectively achieved by introducing the Fragments.


doi: 10.21437/ICSLP.1998-493

Cite as: Arai, K., Wright, J.H., Riccardi, G., Gorin, A.L. (1998) Grammar fragment acquisition using syntactic and semantic clustering. Proc. 5th International Conference on Spoken Language Processing (ICSLP 1998), paper 0063, doi: 10.21437/ICSLP.1998-493

@inproceedings{arai98_icslp,
  author={Kazuhiro Arai and Jeremy H. Wright and Giuseppe Riccardi and Allen L. Gorin},
  title={{Grammar fragment acquisition using syntactic and semantic clustering}},
  year=1998,
  booktitle={Proc. 5th International Conference on Spoken Language Processing (ICSLP 1998)},
  pages={paper 0063},
  doi={10.21437/ICSLP.1998-493}
}