11th Annual Conference of the International Speech Communication Association

Makuhari, Chiba, Japan
September 26-30. 2010

Boosting Systems for LVCSR

George Saon, Hagen Soltau

IBM T.J. Watson Research Center, USA

We employ a variant of the popular Adaboost algorithm to train multiple acoustic models such that the aggregate system exhibits improved performance over the individual recognizers. Each model is trained sequentially on re-weighted versions of the training data. At each iteration, the weights are decreased for the frames that are correctly decoded by the current system. These weights are then multiplied with the frame-level statistics for the decision trees and Gaussian mixture components of the next iteration system. The composite system uses a log-linear combination of HMM state observation likelihoods. We report experimental results on several broadcast news transcription setups which differ in the language being spoken (English and Arabic) and amounts of training data. Our findings suggest that significant gains can be obtained for small amounts of training data even after feature and model-space discriminative training.

Full Paper

Bibliographic reference.  Saon, George / Soltau, Hagen (2010): "Boosting systems for LVCSR", In INTERSPEECH-2010, 1341-1344.