16th Annual Conference of the International Speech Communication Association

Dresden, Germany
September 6-10, 2015

Composition-Based On-the-Fly Rescoring for Salient n-Gram Biasing

Keith Hall, Eunjoon Cho, Cyril Allauzen, Françoise Beaufays, Noah Coccaro, Kaisuke Nakajima, Michael Riley, Brian Roark, David Rybach, Linda Zhang

Google, USA

We introduce a technique for dynamically applying contextually-derived language models to a state-of-the-art speech recognition system. These generally small-footprint models can be seen as a generalization of cache-based models [1], whereby contextually salient n-grams are derived from relevant sources (not just user generated language) to produce a model intended for combination with the baseline language model. The derived models are applied during first-pass decoding as a form of on-the-fly composition between the decoder search graph and the set of weighted contextual n-grams. We present a construction algorithm which takes a trie representing the contextual n-grams and produces a weighted finite state automaton which is more compact than a standard n-gram machine. Finally, we present a set of empirical results on the recognition of spoken search queries where a contextual model encoding recent trending queries is applied using the proposed technique.

Full Paper

Bibliographic reference.  Hall, Keith / Cho, Eunjoon / Allauzen, Cyril / Beaufays, Françoise / Coccaro, Noah / Nakajima, Kaisuke / Riley, Michael / Roark, Brian / Rybach, David / Zhang, Linda (2015): "Composition-based on-the-fly rescoring for salient n-gram biasing", In INTERSPEECH-2015, 1418-1422.