16th Annual Conference of the International Speech Communication Association

Dresden, Germany
September 6-10, 2015

Large-Scale, Sequence-Discriminative, Joint Adaptive Training for Masking-Based Robust ASR

Arun Narayanan, Ananya Misra, Kean K. Chin

Google, USA

Recently, it was shown that the performance of supervised time-frequency masking based robust automatic speech recognition techniques can be improved by training them jointly with the acoustic model [1]. The system in [1], termed deep neural network based joint adaptive training, used fully-connected feed-forward deep neural networks for estimating time-frequency masks and for acoustic modeling; stacked log mel spectra was used as features and training minimized cross entropy loss. In this work, we extend such jointly trained systems in several ways. First, we use recurrent neural networks based on long short-term memory (LSTM) units — this allows the use of unstacked features, simplifying joint optimization. Next, we use a sequence discriminative training criterion for optimizing parameters. Finally, we conduct experiments on large scale data and show that joint adaptive training can provide gains over a strong baseline. Systematic evaluations on noisy voice-search data show relative improvements ranging from 2% at 15 dB to 5.4% at -5 dB over a sequence discriminative, multi-condition trained LSTM acoustic model.

Full Paper

Bibliographic reference.  Narayanan, Arun / Misra, Ananya / Chin, Kean K. (2015): "Large-scale, sequence-discriminative, joint adaptive training for masking-based robust ASR", In INTERSPEECH-2015, 3571-3575.