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Abstract

Utterance classification is a critical pre-processing step for

many speech understanding and dialog systems. In multi-user

settings, one needs to first identify if an utterance is even di-

rected at the system, followed by another level of classification

to determine the intent of the user’s input. In this work, we pro-

pose RNN and LSTM models for both these tasks. We show

how both models outperform baselines based on ngram-based

language models (LMs), feedforward neural network LMs, and

boosting classifiers. To deal with the high rate of singleton and

out-of-vocabulary words in the data, we also investigate a word

input encoding based on character ngrams, and show how this

representation beats the standard one-hot vector word encod-

ing. Overall, these proposed approaches achieve over 30% rel-

ative reduction in equal error rate compared to boosting classi-

fier baseline on an ATIS utterance intent classification task, and

over 3.9% absolute reduction in equal error rate compared to a

the maximum entropy LM baseline of 27.0% on an addressee

detection task. We find that RNNs work best when utterances

are short, while LSTMs are best when utterances are longer.

Index Terms: utterance classification, recurrent neural net lan-

guage model, distributed word representations, LSTM.

1. Introduction

Utterance classification is an important pre-processing step for

many dialog systems that interpret speech input. For example, a

user asking Siri or Cortana to “tell me about the weather” should

have her utterance classified as weather-query so that the query

can be routed to the correct natural understanding subsystem. In

a more challenging scenario, in which multiple speakers may be

issuing commands to a machine or talking to one another, the

system must first correctly ignore human-human and identify

human-computer interactions. In past work we have studied

addressee detection leveraging several speech-based knowledge

sources, such as what was said (lexical content) [1] and how

it was said (speaking style) [2]. Other researchers have also

incorporated multi-modal cues to help solve this task [3, 4, 5, 6].

In the present paper we continue our exploration of neu-

ral network (NN) models for lexical addressee detection [1],

in which we showed how to modify a standard Neural Network

Language Model (NNLM) [7] to perform utterance-level classi-

fication. We now explore potentially more powerful NN-based

models, while also expanding the scope of our investigation to

a different classification task, i.e., intent classification. There is

a vast literature on domain and intent classification for purposes

of speech understanding; for prior work see [8] and references

therein.

All previous ngram-based classification approaches (stan-

dard LMs, NNLMs, boosting) suffer from two fundamental and

competing problems: the limited temporal scope of ngrams,

and their sparseness, requiring large amounts of training data

for good generalization. The longer ngrams one chooses to

model, the more the sparseness issue is exacerbated. To address

sparseness of data, one can try to enlist outside training data

for ngram LMs [9] or to train word embeddings [1] for NN-

based classifiers, but these approaches are ultimately limited by

the domain-specific nature of ngram distributions (i.e., models

trained from outside data often do not generalize). The limited

temporal scope of ngrams matters for utterance classification as

results may depend on long-term dependencies (“Tell me about

your day” and “how was the Mexican restaurant” are likely di-

rected at other humans while “Tell me about the weather” and

“Tell me about Mexican restaurants” are likely directed at the

system). Since recurrent neural models hold the promise of

encoding long-term dependencies through its hidden state, we

propose models based on Recurrent Neural Networks and Long

Short-Term Memory [10] Units. As our results show, the recur-

rent neural architectures investigated here achieve better results

than the simple feedforward NNs used previously, even with-

out using outside data to train word embeddings as proposed

in [1]. In this work, we focus on tasks with binary decisions

(which can be treated as detection tasks), although the proposed

systems can easily be extended to multi-class situations.

2. Proposed Systems

2.1. RNN-based utterance classifier

Recent work in Recurrent Neural Network Language model-

ing [11] suggests that temporal modeling of an entire sentence

through a series of hidden units can outperform models based

on the Markov assumption. Much like the original Neural

Network Language Model [7], the RNNLM maps a one-hot

|V |-dimensional vector w – in which only one dimension of

w is 1 and the rest are 0 and |V | is the size of the vocab-

ulary – to a dense n-dimensional word embedding v through

the function Pvw. The hidden state ht is a function of the

current embedding, the previous hidden state, and a bias –

ht = σ(Wtht−1 + vt + bh) – and the model attempts to pre-

dict the next word wt+1 given ht. A trivial adaptation of the

RNNLM for this task would be to train separate models for each

class, and at test time take the log likelihood ratio (as is done

for LM-based classifiers [1]). This approach, however, requires

different vocabulary sets for each model, and unknown word

probabilities need to be significantly tuned. Moreover, such an

approach would also not share statistical strength between the

models, as word representations are trained independently on

different classes of data.
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Instead, we train a single model on utterance class labels,

shown in Figure 1. The RNN model attempts to classify the

utterance based on the information stored thus far in ht. At test

time, the probability of an utterance label is calculated as:

P (L|w) ≈ P (L1, . . . , Ln|w) =
n∏

i=1

P (Li|w)

≈
n∏

i=1

P (Li|wi, hi−1) =
n∏

i=1

P (Li|hi)

where the last equality is embodied in the final softmax func-

tion.

2.2. LSTM-based utterance classifier

A desideratum for a model performing utterance classification

is to have a single label per utterance. In preliminary exper-

iments, we did not obtain competitive performance with RNN

models predicting a single label at the end of an utterance, likely

due to the vanishing gradient problem. As a result, we inves-

tigated the use of long short-term memory (LSTM) units for

utterance classification.

The LSTM, first described in [10], attempts to circumvent

the vanishing gradient problem by separating the memory and

output representation, and having each dimension of the current

memory unit depending linearly on the memory unit of the pre-

vious timestep. A popular modification of the LSTM uses three

gates – input, forget, and output – to modulate how much of

the current, the previous, and output representation should be

included in the current timestep. Mathematically, it is specified

by the equations:

it = σ(Wivt + Uiht−1 + bi)

ft = σ(Wfvt + Ufht−1 + bf )

ot = σ(Wovt + Uoht−1 + Vomt + bo)

mt = it ◦ tanh(Wcxt + Ucht−1 + bc) + ft ◦mt−1

ht = ot ◦ tanh(mt)

where it, ft, and ot denote the input, forget, and output gates

respectively, mt, the memory unit, and ht, the hidden state, and

is shown in Figure 2. We found that, unlike for RNNs, a model

making a single prediction at utterance end does achieve good

performance.

One question is whether the one-hot vector w should input

directly to the LSTM, as proposed by [12] for a slot-filling task.

We found it better to use a separate linear embedding, and use

the embedding vt as input to the LSTM. Figure 2 shows this

model.

2.3. Word hashing

One issue we noticed was that recurrent models are somewhat

more sensitive to the occurrence of unknown words than stan-

dard feedforward networks. This is best explained by example.

Consider an utterance which begins with an unknown word. In a

trigram model, only the first two samples are affected by the un-

known word, while in recurrent NNs all future hidden states are

affected by the unknown word. For corpora with a high percent-

age of singletons in the training set, this problem is particularly

acute, as the standard practice is to map all such words to an un-

known token. In fact, one corpus on which we tested our models

contained 60% singletons. Moreover, such unknown words may

be informative, such as “Kleaners” in “Can you show me the

Figure 1: Proposed RNN classifier model.

Figure 2: Proposed LSTM classifier model.

address of Happy Kleaners?”. To combat issues with unknown

word modeling, we investigate word representations based on

sets of character ngrams, as proposed in [13]. A word such

as “Kat” is transformed into a set of character ngrams, each of

which is associated with a bit in the input encoding. In the case

of character trigrams, this hash is the set “#Ka”, “Kat”, “at#”,

and the probability of a collision in the hash is less than 0.01%.

3. Method

For our experiments, we chose two corpora – ATIS and the Con-

versational Browser – as the corpora exhibit large differences,

and we wanted to determine whether our proposed models can

handle vastly different conditions. The ATIS corpus generally

has higher-accuracy transcripts, fewer singletons, and longer ut-

terances than the Conversational Browser corpus.

3.1. ATIS Intent Classification Task

We follow the ATIS corpus setup used in [14, 15] in this pa-

per. The training set comprises 4,978 utterances taken from the

Class A (context independent) portions of ATIS-2 and ATIS-

3, and 893 test utterances from the ATIS-3 Nov93 and Dec94

datasets. The corpus has 17 different intents, which we mapped

to a binary “flight” versus “other” classification task (70% of

the utterances are classified as “flight”, though our metric is in-

sensitive to prior distribution, as explained below). Training

was based on reference transcripts, but testing used ASR out-

put as described in [8], with a word error rate of around 14%.

There are two versions of the input: one uses only the original

transcript words, the other—known as “autotagged”—replaces

entities by phrase labels such as CITY and AIRLINE, obtained

from a tagger [12].

3.2. Conversational Browser addressee classification

The “Conversational Browser” (CB) is a corpus in which two

users interact with a dialog system using spoken input. Subjects

were brought into a room and seated about 5 feet away from a

large TV screen and roughly 3 feet away from each other, told

basic capabilities and a small set of short commands, but are
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Figure 3: Distribution of word occurrences for ATIS and Con-

versational Browser datasets.

otherwise told to use unrestricted natural language. More infor-

mation about the dialog system itself and its spoken language

understanding approach can be found in [16].

The resulting corpus comprises 6.3 hours of recordings over

38 sessions with 2 speakers each from a set of 36 unique speak-

ers. Session durations ranged from 5 to 40 minutes, as deter-

mined by users. Speech was captured by a Kinect microphone-

array; endpointing and recognition used an off-the-shelf recog-

nizer. Note that training and testing is based on recognizer out-

put, with a word error rate of about 20%. More information on

the addressee task for this corpus can be found in [1].

3.3. NN Training

As noted by other authors, parameter estimation of RNNs is

substantially more difficult to train than for feedforward net-

works. Well-trained systems typically use a combination of mo-

mentum, truncated back-propagation through time (BPTT), reg-

ularization, and gradient clipping. Since utterance lengths for

the corpora investigated were typically under 20, we found no

improvement employing gradient clipping or truncated BPTT.

Moreover, regularization had either minimal or deleterious ef-

fect. While simple momentum did help, more advanced modi-

fications such as Nesterov momentum yielded no improvement.

Despite the relative ease of the problem, we did find that fi-

nal results were sensitive to initial parameters, which, for RNN

and non-gate LSTM weights were drawn from a N (0.0, .04)
distribution, while LSTM gate weights were drawn from the

same distribution, except that the gate biases were a large pos-

itive value (around 5) to ensure those values started at approxi-

mately 1.0. The variance of performance is investigated in Sec-

tion 5. One heuristic that worked well in practice: prior to train-

ing, we calculated the cross-entropy on a held-out set across ten

random seeds and picked the one which produced the lowest

cross-entropy.

The initial learning rate for each of the systems is 0.01, with

a momentum of 3E-4 for recurrent neural networks, and 3E-5

for LSTM models. The learning rate is halved once the cross-

entropy on a held-out set decreases less than 0.01 per exam-

ple, continues at the same rate until the same stopping point is

achieved, and then halved each epoch until cross-entropy does

not decrease. As stated earlier, the best initial cross-entropy

across 10 different initializations is used.

3.4. Experimental Setup

Both the RNN and LSTM models use a 200-dimensional word

embeddings for one-hot and word hashing on both corpora, as

those parameters experimentally produced the best results. In

addition, the LSTM included a layer of 15-dimensional hid-

den and memory units. Since the LSTM per hidden unit uses

11 times the number of parameters as a standard feedforward

network, the LSTM model has roughly 150% more parameters

than the RNN, but this structure produced the best results. For

word hashes, we use a concurrent trigram and bigram represen-

tations. For example, the set describing “cat” is “#c”, “ca”, “at”,

“t#”, “#ca”, “cat”, and “at#’.

For model combination and evaluation, we use linear logis-

tic regression (LLR) to calibrate all model scores or to combine

multiple scores where applicable [17]. To estimate LLR param-

eters, we jack-knife over all sessions in the test data, training

on all but one session in turn, and cycling through all sessions.1

Scores are then pooled over the entire test set and evaluated us-

ing equal error rate (EER). The EER is obtained by choosing a

decision threshold that equates false alarm and miss error prob-

abilities. EER is thus independent of class priors.

4. Results and Discussion

Results for both proposed systems are shown in Tables 1 and

2 and highlight the importance of using multiple corpora and

tasks for assessing model performance. For the ATIS corpus,

both the RNN and LSTM models beat a maximum entropy lan-

guage model, and the LSTM beats a boosting model. In par-

ticular, the LSTM model is 45.2% better relative to the boosted

word-ngram system on the word setting, and 40.1% better when

the certain classes, such as digits and named entities, are auto-

matically tagged. RNN models do not beat the boosted ngram

baseline system when using only words, but do in the auto-

tagged setting. Finally, in no instance does word hashing beat

the standard word embedding baseline.

These results are reversed for the CB data, as shown in Ta-

ble 2. Here, the LSTM model is modestly worse than the base-

line. The RNN model, however, is 0.58% better absolute than

the ngram baseline for standard words. Moreover, hashing pro-

vides a substantial gain for both the LSTM and RNN model.

The RNN word hash is 1.73% better absolute over the ngram

baseline, and in combination is 3.92% better.2 All models out-

perform previous feedforward neural network language models.

What accounts for the LSTM to perform better than RNN

and baseline models on ATIS while worse on CB, and word

hashing to perform better than word embedding on CB while

worse on ATIS? The answer to the first question is likely that

the average utterance length of ATIS is much higher than on

CB. As shown in Figure 4, most utterance lengths for the CB

data are under 5 words, while for ATIS the median is above 10

words. Differences in datasets also account for the disparate

performance in word hashing. As shown in Figure 3, the num-

ber of singletons – which get mapped to unknown words in the

training set – for ATIS is roughly around 30%, while for CB,

the number is 60%.

Tables 3 and 4 show the mean performance and standard

deviation across 10 different random seeds. On average, the re-

sults are better than the baseline, but the mean result is generally

a bit worse than picking the best initial cross-entropy. The no-

table counterexample are the word-based RNN systems on the

ATIS dataset. Moreover, it looks as if the LSTM generally has

1For ATIS we did not have session information and paritioned the
data sequentially into nine equal-sized portions.

2Combination with baseline systems did not, on average improve
performance
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higher variance than the RNN counterparts. Since the datasets

are relatively small, this effect could be diminished when using

more data.

Finally, one can modestly improve performance by picking

the best neural network based on held-out set performance, at

the cost of ten times the training time. Using those results, can,

in some cases, achieve the oracle results for both sets.
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Figure 4: Histograms of sentence length for ATIS (left) and

Conversational Browser (right) data.

Table 1: ATIS intent classification results. The column labeled

autotagged refers to the condition in which certain named enti-

ties are marked via lookup table.

System EER (%) Autotag EER (%)

word-ngram (MaxEnt LM) 9.37 6.05
word-ngram-boost 4.47 3.24
RNN-word 5.26 2.45
RNN-hash 5.33 2.81
LSTM-word 2.45 1.94

LSTM-hash 2.88 2.81

Table 2: CB addressee classification results. The column la-

beled “Combo” refers to system performance when scores are

combined with baseline word-ngram system.

System EER (%) Combo EER (%)

word-ngram (MaxEnt LM) 27.00 –

NNLM-addressee 30.01 –

NNLM-ngram 29.46 –

RNN-word 26.42 24.72
RNN-hash 24.27 23.08

LSTM-word 27.17 25.69
LSTM-hash 26.65 25.28

Table 3: Average, Best Held Out, and Oracle Errors on ATIS

intent classification. Best held out refers to the hypothetical

performance when the model with the lowest cross-entropy on a

held-out set is chosen (among 10 random seeds) after training.

System EER (%) Autotag EER (%)

Average Error

RNN-word 4.86± .919 3.50 ± .775
RNN-hash 4.32± .917 2.64 ± .324
LSTM-word 3.38± .986 2.22 ± 1.01
LSTM-hash 4.05± 1.13 2.64 ± 1.02
Best Held-Out X-ent (Oracle Error)

RNN-word 3.95 (3.95) 2.45 (2.45)

RNN-hash 3.59 (3.24) 2.45 (2.09)

LSTM-word 2.81 (2.45) 2.02 (1.30)

LSTM-hash 3.24 (2.88) 2.02 (1.22)

5. Conclusions

In this work, we investigated recurrent models for utterance

classification. LSTM and RNN models in general outperformed

Table 4: Average, Best Held Out, and Oracle Errors on CB

addressee detection. Best held out refers to the hypothetical

performance when the model with the lowest cross-entropy on a

held-out set is chosen (among 10 random seeds) after training.

System EER (%) Combo EER (%)

Average Error

RNNLM-word 26.20 ± .304 25.13 ± .319
RNNLM-hash 24.66 ± .482 23.81 ± .395
LSTM-word 27.67 ± .822 25.86 ± .686
LSTM-hash 26.69 ± .802 25.64 ± .574
Best Held-Out X-ent (Oracle Error)

RNNLM-word 25.75 (25.65) 25.20 (24.09)

RNNLM-hash 23.88 (23.88) 23.43 (23.08)

LSTM-word 27.47 (26.65) 27.25 (24.82)

LSTM-hash 25.65 (25.65) 25.20 (24.88)
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Figure 6: DET curve for ATIS intent classification.

strong baselines based on ngram boosting or maximum entropy

LMs. LSTM models seemed to work quite well when the ut-

terances were long on average, while the RNN seemed to work

better for shorter utterances. Moreover, word hashing provided

a good improvement for the corpus with many singleton words.

For future work, we would like to better quantify at what ut-

terance length is the LSTM a better model. Moreover, we would

like to analyze in what scenarios word hashing makes sense, and

how to best combine word hashing and standard word embed-

ding approaches. Finally, we are in the process of using these

models on much larger corpora to determine if similar improve-

ments are available.
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