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Abstract
Deep Neural Networks (DNN) have been largely used and suc-
cessfully applied in the context of speaker independent Auto-
matic Speech Recognition (ASR). However, these models are
not easily adapted to model a specific speaker characteristic.
Recently, one approach was proposed to address this issue,
which consists of using the I-vector representation as input to
the DNN. The I-vector is playing the role of providing informa-
tion about the speaker as well as the environmental conditions
for a given recording. This approach achieved a significant im-
provement in the context of a hybrid system of DNN combined
with Hidden Markov Model (HMM). In this paper, we study
the effect of speaker adaptation based on the I-vector frame-
work in the context of stacked bottleneck features. These fea-
tures, extracted from a second level of DNNs, are modelled by
a classical Gaussian Mixture Model (GMM) ASR system. The
proposed approach achieved an absolute WER improvement of
1.2% on an Arabic Broadcast news task.
Index Terms: DNN, I-Vector, Bottleneck Features, Speech
Recognition

1. Introduction
Over the past few years, deep neural networks (DNNs) have
become increasingly popular for automatic speech recognition
(ASR), due to the improvement in accuracy over conventional
Gaussian mixture model (GMM) based systems. There are two
main ways to use a DNN for acoustic modelling. With the
hybrid approach, the DNN is trained to directly estimate the
posteriors of hidden Markov model (HMM) states. Alterna-
tively, with the tandem approach, the DNN is used to learn an
effective feature representation for a particular task. The fea-
tures are obtained by training a DNN to predict a phonetic tar-
get [1] such as the HMM state posteriors. The outputs of a
low-dimensional internal layer within the DNN, called the bot-
tleneck (BN) layer, are then used as features in the conventional
HMM-GMM framework.

Many studies have been conducted with BN features in or-
der to reduce the accuracy gap between hybrid and BN-based
tandem ASR systems [2, 3, 4, 5, 6]. In the work described in [7],
the authors describe a hierarchical architecture in which a sec-
ond DNN is used to correct the posterior outputs (estimation of
HMM state emission probabilities) by using a different set of
features. They also implement low-rank matrix factorization by
using a linear activation function for the BN layer. In this con-
figuration, the BN layer was found to be most effective in the
last hidden layer just prior to the output layer. This structure is

also used in this work to implement BN features. Another use
of BN features is to use them in hybrid systems. This idea has
been successfully explored in [8, 9]. This approach will also be
considered in this work.

A major drawback of DNNs is the difficulty of adapting
them to a specific speaker. Most techniques developed for
adapting GMMs cannot be applied to DNNs. One exception is
fMLLR adaptation, a widely used technique for speaker adap-
tation proposed by Gales [10]. Yu et al. proposed the Kullback-
Leibler divergence (KLD) regularization for adapting a DNN.
They reported an error reduction up to 30% [11]. Recently,
Saon et al. [12] proposed the use of I-vectors for adapting a
DNN to a specific speaker. The idea is to concatenate a speaker-
specific I-vector with conventional frame-based features. With
the additional I-vector information, the DNN is able to learn
speaker-specific differences. We successfully used this tech-
nique for the task of Arabic broadcast news transcription [13].

In this paper, we explore the use of the I-vector for speaker
adaptation of DNNs used for BN feature extraction. The rest
of the paper is organized as follows. Section 2 and Section 3
describe the approach used in this work to extract BN features,
and how I-vectors are extracted. Section 4 describes our recent
experiments and results. The paper is concluded in Section 5.

2. Bottleneck Feature Extraction
BN feature extraction typically is accomplished by using a
DNN to extract discriminative features from a speech corpus.
BN features can then be modelled with a GMM, allowing the
use of all optimization techniques previously developed for the
classical GMM based ASR system.

The BN feature extractor used in this work is a hierarchical
approach described in [14], combined with a low-rank matrix
factorization proposed by Sainath et al.[15]. This approach,
low-rank stacked BN (LrSBN) has produced good results on
low-resource ASR systems [7]. The LrSBN approach, summa-
rized in Figure 1, is used to extract features for a GMM system.
The input of the first layer consists of 23 critical-band energies
that are obtained from a Mel filter-bank. Pitch and voicing prob-
ability are then added. 11 consecutive frames are then stacked
together. Each of the 23+2 dimensions is then multiplied by a
Hamming window across time, and a discrete cosine transform
(DCT) is applied for dimensionality reduction. The 0th to 5th
DCT coefficients are retained, resulting in a feature of dimen-
sionality (23 + 2) x 6 = 150.

The second layer is used for correcting the posterior out-
puts of the first layer. In this architecture, the input features of
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Figure 1: Diagram of bottleneck feature extraction (from [7]).

the second DNN are the outputs of the BN layer from the first
DNN. Context expansion is achieved by concatenating frames
with time offsets of -10, -5, 0, 5, and 10. Thus, the overall time
context seen by the second DNN is 31 frames. Both DNNs use
the same setup of 5 hidden sigmoid layers and 1 linear BN layer,
and both use tied-states as target outputs. The targets are gener-
ated by forced alignment from an HMM baseline. No DNN pre-
training is used. Finally, the raw BN outputs from the second
DNN are whitened using a global PCA, and used as features for
a conventional context dependent GMM-HMM system. More
details about the architecture can be found in [7].

3. I-Vector Extraction
The I-vector approach was first introduced in speaker and lan-
guage recognition [16], where a large GMM, called the univer-
sal background model (UBM), is typically trained to act as a
prior model of the distribution of speech sounds. The speaker,
or language-adapted UBM mean components, also known as a
supervector, have been found to be an effective representation
for speaker and language recognition. The I-vector approach
models supervector adaptation to a given sequence of frames in
a low dimensional space called the total variability space. In the
I-vector framework, each speech utterance can be represented
by a GMM supervector, which is assumed to be generated as
follows:

M = m+ Tw

where m is the speaker independent and channel independent
supervector (which can be taken to be the UBM supervector),
T is a rectangular matrix of low rank, and w is a random vec-
tor having a standard normal distribution prior N(0, 1). The
I-vector is a Maximum A Posteriori (MAP) point estimate of
the latent variable w adapting the UBM (supervector m) to a
given recording.

Recently, the I-vector method has been successfully applied
to speaker and channel adaptation in speech recognition [12].
Adding speaker characteristics to the audio features allows the
DNN to learn more efficiently how each speaker can produce a
specific phoneme.

For this work, an I-vector extractor of dimension 100 has
been trained, using a UBM consisting of 512 mixtures. The
features used to train the UBM are 40 dimensional linear dis-
criminant analysis (LDA)-transformed features of nine stacked
MFCC frames of dimension 13. The fMLLR speaker adapta-
tion transform has been applied to the feature vectors. In our
experiments, the GMM sizes are much smaller than those used
in [12] because the training data set is limited.

4. Experiments
4.1. Experimental Setup

The QCRI automatic Arabic speech recognition corpus consists
of broadcast news reports and conversational shows spoken only
in Modern Standard Arabic (MSA) [13]. The Al-Jazeera news
channel is the main source for collecting these data which con-
tains 60 hours of manually transcribed recordings. The record-
ings have been segmented and transcribed to avoid non-speech
segments such as music and background noise. The recordings
were made using satellite cable sampled at 16kHz. The devel-
opment dataset consists of one hour of speech, and is composed
of broadcast news reports. No conversational shows have been
included. However, two hours of speech have been collected as
a test set comprising both kinds of data types used in the training
corpora.

In this work, MADA [17] is used to implement a morpho-
logical decomposition to normalize and vowelize the text by re-
trieving the missing diacritics. Since several vowelizations for
a specific word are possible, a confidence score is provided for
each candidate. MADA has been widely used for both Statis-
tical Machine Translation [18, 19], and in ASR to address the
aforementioned challenges. See [17] for more information re-
garding MADA operational details.

The lexicon has been created with phonological rules pro-
posed by Biadsy et al. [20]. They describe rules for repre-
senting glottal stops, short vowels, coarticulation of the definite
article Al, nunnation, diphthongs, word ending p (/t/), and case
endings, while ignoring geminates.

The language model has been built from three different
sources: 1) manual transcriptions of the training data, 2) auto-
matically diacritized transcriptions (430K words) of Al-Jazeera
broadcast news, and 3) automatically diacritized texts (109 mil-
lion words) downloaded from the Al-Jazeera web site. The
vocabulary contains 400K words, combining words from the
audio transcriptions and the 400K most frequent words in Al-
Jazeera web site texts. The development set has been used to
choose the interpolation coefficient in the mixing of both text
sources. The out-of-vocabulary (OOV) rate on the test set is
3.1%.

4.2. Basic GMM Systems

This section describes the basic ASR system used to produce
the HMM state alignments that are needed for training the DNN
from which BN features will be extracted. The first system is
based on an HMM-GMM using conventional cepstral features.
These acoustic features correspond to 12 Mel-frequency Cep-
stral Coefficients (MFCCs), energy, and their first and second
derivatives. The trained speech recognizer contains 4,000 state
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distributions, with a total of 128,000 Gaussian components.
The second system is also a GMM-based HMM system

where speaker adaptation was applied to make the acoustic
models more appropriate to a specific speaker. The method
used in this work is fMLLR, a widely used technique for
speaker adaptation proposed by Gales [10]. However, since the
only speaker information available from the database is speaker
turns, features are adapted on an utterance-by-utterance basis.
This system uses a different feature set compared to the first
ASR system. These features consist of stacking 13 MFCC
speech frames with a context window of 9 frames. These fea-
tures were then projected into a 40 dimensional space using an
LDA transform.

WER
System Dev. Set Eval. Set
Basic GMM 28.01% 42.62%
GMM+fMLLR 19.04% 32.38%

Table 1: WERs of GMM-Based systems

The results obtained by the two systems are reported in Ta-
ble 1. The frame labels used to train the DNN have been pro-
duced by the second ASR system.

4.3. Tandem BN-GMM ASR Systems

The architecture described in Section 2 has been used for the
extraction of BN features. Several experiments have been con-
ducted in order to measure the efficiency of speaker adaptation
using I-vectors in the context of BN feature extraction. I-vectors
can be appended to features at varying positions in this archi-
tecture: 1) appended to filter bank features, the input of the first
DNN; 2) appended to concatenated BN layer outputs of the first
DNN, which is the input of the second DNN, 3) finally, the I-
vectors can be added to input features of both DNNs. Table 2
shows the word error rate (WER) results of the different experi-
ments. Note that the development set on this table has not been
used for training the DNNs. Instead, a part of the training set
has been used to tune DNN parameters.

WER
System Dev. Set Eval. Set
GMM (no adaptation baseline) 15.84% 28.49%
GMM + fMLLR (adapt baseline) 14.04% 27.83%
GMM i-vec 1st stage + fMLLR 15,05% 28.32%
GMM i-vec 2nd stage 15.52% 28.81%
GMM i-vec 2nd stage + fMLLR 13.77% 26.65%
GMM i-vec both stages + fMLLR 14.57% 28.18%

Table 2: WERs with BN features in tandem BN-GMM systems.

The input feature vectors for the tandem GMM systems are
the concatenation of the MFCC and BN features on which the
LDA procedure described above is applied. The first two lines
of Table 2 show the WER for basic GMM ASR systems without
using I-vectors. These form the no adaptation, and adaptation
baselines for these experiments. Note that using BN features in
addition to MFCC with GMM (second line to Table 2) led to
an absolute WER improvement of 4.55% on the evaluation set
over the basic MFCC GMM system using fMLLR adaptation
presented in Table 1.

The last three lines show the results of using I-vectors in
the configurations discussed before. The results show that us-
ing I-vectors in combination with filter bank features hurt the
WER, regardless of whether or not the input of the second DNN
was augmented by I-vectors. This result was somewhat surpris-
ing considering that the use of I-vectors in training of the first
DNN led to a slightly better WER on the held out tuning set.
On the other hand, appending I-vectors to the input features of
the second DNN leads to a WER improvement of 1.18%, on
the evaluation set, over the BNF baseline system (line 2 of Ta-
ble 2). Note that the WER is worse than the baseline when no
fMLLR is used with the I-vector adapted BN features (line 4
of the table). This could be the sign of a mismatch between
the speaker adapted BN features and non-adapted MFCC-based
features. Recall that the UBM used for extracting I-vectors has
been trained with fMLLR adapted features.

4.4. Hybrid BN-DNN ASR Systems

The next experiments we conducted explored the use of BN fea-
tures on hybrid DNN-based ASR systems. Two types of BN
features were considered for these experiments. The first one,
denoted as bnf is the usual set of BN features extracted from
the second stage DNN, the same features used in the tandem
BN-GMM experiments. The second option is to use the context
expanded (over 30 frames, using one frame every 5) output of
the first stage DNN in the LrSBN architecture as BN features as
input of the DNN, as proposed in [6]. This features are referred
as cat features.

The usual input for hybrid DNN training is the concatena-
tion of 11 LDA frames consisting of a total of 440 features. This
raises the question of whether the additional BN features have
to be spliced or not. The first experiment conducted was to de-
termine whether to splice or not. Note that in this experiment,
MFCC-based features are spliced in the usual way.

WER
System Dev. Set
Spliced bnf 15.34%
Non-spliced bnf 13.93%
Spliced cat 15.52%
Non-Spliced cat 14.57%

Table 3: Results with spliced and non spliced BN features.

The experimental results, summarized in Table 3, show that
a better WER is obtained when using BN features without any
splicing, for both type of features. This result is not surprising
considering that the DNN used to extract BN features consider a
context of 31 frames. Consequently, contextual information are
already present in BN features. Based on these results, splicing
is applied only on MFCC-based features in all subsequent ex-
periments. The input features will thus be the I-vector created
from the utterance, appended to BN features and spliced LDA-
fMLLR features. Figure 2 describes how features are combined
in order to be fed into the DNN.

Table 4 shows the results of different experiments that have
been conducted with different feature combinations. In this ta-
ble, bnf ivec denotes BN features trained with an I-vector ap-
pended to input features in the training process of the second
DNN. The first experiment is a DNN fed with LDA-fMLLR
features to which the I-vector extracted from the utterance has
been appended. This is the baseline DNN experimental result
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Figure 2: Using I-vector as a speaker feature vector

which shows that the fMLLR adapted tandem BN-GMM base-
line system described in the previous section performs better
than a normal DNN by 1.5% on the evaluation set. However,
the use of sequential training with the MPE criterion works bet-
ter, but with a difference of only 0.69% with BN features, and
only 0.19% with cat features.

WER
System Dev. Set Eval. Set
fMLLR (adapted DNN baseline) 18.29% 29.49%
fMLLR + I-vector 17.33% 28.16%
fMLLR + I-vector+MPE 14.45% 25.96%
fMLLR + bnf 13.93% 26.41%
fMLLR + I-vector+bnf 14.91% 26.30%
fMLLR + bnf ivec 14.66% 26.54%
fMLLR + I-vector+bnf ivec 14.34% 26.24%
fMLLR + I-vector+bnf ivec+MPE 14.00% 25.40%
fMLLR + cat 14.57% 26.08%
fMLLR + I-vector+cat 14,84% 25.89%
fMLLR + I-vector+cat+MPE 13.63% 24.79%

Table 4: WERs with BN features in hybrid BN-DNN systems.

The best result is obtained by using cat features with a se-

quentially trained DNN. In this case, the absolute WER on the
evaluation set has been improved by 1.17% over the baseline
(third line of Table 4). However, the effect of I-vectors on the
overall WER is relatively small. The biggest part of the im-
provement comes from the use of BN features, as shown by the
result with the DNN system without any use of I-vectors. In-
deed, the results show that the improvement of using I-vector in
both the BN feature extraction and the hybrid DNN setup is only
0.17% absolute on the evaluation set (line 4 and 7 in Table 4).

5. Conclusion
This paper presented a study on using I-vectors for speaker
adaptation in the context of bottleneck features. The results
show that adding I-vectors to the input features of the second
level of the stacked bottleneck feature extraction architecture
led to a WER improvement of 1.18% absolute on an Arabic
broadcast and conversational speech task. The approach re-
duced the gap between tandem GMM and hybrid DNN systems
to only 0.69% absolute.

Experimental results also confirm previous work that using
BN features in a DNN-based system improves the WER. The
improvement is up to 1.16% absolute in the scenario presented
in this work. The use of I-vectors in a hybrid DNN using BN
features has a small effect on the WER, compared to results
published so far. This may be due to the fact that BN features
are able to capture similar information about speakers. We plan
to investigate this further in future work.
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