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Introduction

MT viewed here to consist of two major subproblems:
o Lexical choice - generate target words

« Reordering - find the right target word order

Generative Model, FST-based (AT&T Evaluation System):
e Training

« Decoding

e Reordering

Discriminative Models for MT:
o Sequential Maximum Entropy (MaxEnt) Lexical Choice

« Bag-Of-Words (BOW) Maximum Entropy Lexical Choice
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———
FST-based MT (Training)

Generative Sequence Classifier

Approach for training the model:
1. Create word alignment for bilingual sentence-aligned corpus

2. Pair aligned phrases, reorder words within target phrases and
create sequences of bilingual (-> joint) phrase tuples from the
word alignment

3. Estimate n-gram language model (LM) on sequence of bilingual
phrase tuples

4. Convert LM into a weighted finite-state transducer (WFST) by
splitting bilingual phrases into input and output labels

See also: Bangalore (2000), Vidal (2004), Kanthak (2004), Crego (2004)
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————
FST-based MT (Bilanguage Example)

Chinese: R 78 7& M0 ©F 2 jn oh i 0 ¥ 52
English: Would you like cream and sugar in your coffee ?

Bilanguage: ({R, Would you) (28, like) (£, in) (M0, your) (B, coffee) (£, ) (A0,)
(I, cream) GH, ) (F0, and) (#&, sugar) ("%, ) (?,?)
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FST-based MT (Decoding)

Using the WFST T estimated from bilingual phrases/tuples, decoding
a source sentence F into the best target translation E can be
performed by FST-composition followed by best-path search:

E* = n;(best(FoT))
Using an additional model W to penalize word insertions:

E* = z,(best(Fo To W))

Additionally using global reordering:

Source: E* = z,(best(perm(F) o T o W))
Target: E* = best(perm(z;(n-best(Fo T o W))) o LMg)
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FST-based MT (Permutation)

Constraint permutations: local (N = 4, P = 2):

3
1 :

2 ./.<./ 03
Properties:

« Not finite-state => if at all possible, only applicable to statically
compiled speech-to-speech translation FSTs for small P

« Only feasible with on-demand exploration of the automaton
« State-space complexity O(2VN) for P > N, and O(N * 2P) for P< N
« Memoization during decoding is the limiting factor

See also: Kanthak (2005)
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Sequential MaxEnt Lexical Choice Model

Idea: model P(E|F) directly
« Obvious solution: discriminative sequence classifier, e.g. CRF

o Problem: CRFs yet only applied to either small tasks or by making
crude assumptions

Use conditional MaxEnt with independence assumptions instead:
1
P(E | F) =] | Per| (F.i))

« Trained directly on the bilanguage constructed in the FST approach
o Feature functions used here: source words in context

See also: Bangalore, Haffner (ICSLP 2006)
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Sequential MaxEnt Lexical Choice Model

High complexity of the classifier O(N*F*C):
« Here N = 100k, F = 100k, C = 10k

« Reduce complexity by using binary 1-vs-other classifiers (another
independence assumption), trick to train the classifiers in parallel

« We use AT&T's highly optimized, scalable large-margin classifier
implementation LLAMA: e.g. in this case, training of the classifier is
about 40x faster compared to LIBSVM

« Still pretty slow in decoding as all classifiers have to be evaluated
at each source position
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Bag-Of-Words MaxEnt Lexical Choice Model

Sequential MaxEnt Model suffers from:
o Improper alignment, e.g. from GIZA++

« Early and fixed reordering decisions due to the bilanguage
« Independence assumptions

Bag-Of-Words MaxEnt Lexical Choice Model:

o Just different parameterization of the sequential MaxEnt model
o Decoding:
BOW *(F,0)={e|P(e| D(F))> 6}

Properties:
o Doesn’t use alignment

« No independence assumptions
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BOW Lexical Choice Model (Refinements)

Length modelling:

e Produce larger bag than sentence length (tuned by cutoff
parameter)

« Allow for word deletions in reordering phase (additional global
deletion penalty)

Reordering:
« Exactly the same as in FST and sequential MaxEnt model

o Interprets bag-of-words as sequence of words => window size
parameter has no meaning anymore
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Comparison: Sequential and BOW MaxEnt

Sequential Classifier

BOW Classifier

Output target

Target word for each
source position /

Target word given a
source sentence

Input features

BOgram(F,i-d,i+d): bag of
n-grams in source sent. in
the interval [i-d, i+d]

BOgram(F,0,|F|): bag
of n-grams in source
sentence

Probabilities

P(e;| BOgram(F,i-d,i+d )

Independence assumption
between the labels

P(BOW(E) |
BOgram(F,0, |F|))

Number of classes

One per target word or phrase

Training samples

One per source token

One per sentence pair

Preprocessing

Source/target word
alignment

Source/target
sentence alignment
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Corpus Statistics

Statistics of the supplied corpora for the IWSLT
Chinese -> English Speech Translation Task

Training Dev 2005 Dev 2006

Chinese | English | Chinese | English | Chinese | English
Sentences 46,311 506 489
Running Words | 351,060 | 376,615 | 3,826 | 3,897 | 5,214 | 6,362%*
Vocabulary 11,178 | 11,232 931 898 1,136 | 1,134%*
Singletons 4,348 4,866 600 538 619 574%*
OOVs [%] - - 0.6 0.3 0.9 1.0
ASR WER [%] - - - - 25.2 -

* Statistics collected only on the first of multiple references
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Experimental Setup

Chinese data split into sequences of characters

Punctuation marks:
« Automatically inserted using MaxEnt classifiers

e 6 classes: ;,.? ! and none
e Model trained on IWSLT official training data

Target reordering:

o Used for all 3 approaches consistenly

e 4-gram

« Language model trained only on English part of IWSLT training data
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Experimental Results

Comparison of mBLEU scores for the 3 different translation approaches
on the IWSLT Chinese -> English Speech Translation Test Corpora

Dev 2005 Dev 2006 Eval 2006

Text Text ASR Text ASR

FST 51.8 19.5 16.5 14.4 12.3
SeqMaxEnt 53.5 19.4 16.3 - -
BOWMaxEnt 59.9 19.3 16.6 - -
FST w/06 - 22.3%* - 16.0 -

* average of 10-fold split on Dev 2006, rest was added to training with weight 25
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Parameters in BOW Lexical Choice Model

ELEU Score

0. 46 | | | | | | | 0.3 | | | | | | |
= £.5 7 7.5 8 8.5 9 2.5 le 4 & 8 1@ 12 14 16 18 ca

Permutation Window Size Deletion Penalty

o Performance currently limited by permutation window size
« Also no pruning applied
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Conclusion & Outlook

This talk was about:

o« AT&T’s generative FST model

« 2 new discriminative models for lexical choice

« Bag-of-Words model does not rely on word alignment at all
« Discriminative models superior to generative FST approach

Future work:
« More features for both discriminative approaches
o Better reordering framework for BOW model
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Thank you for your attention!

Questions please.




