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Abstract
This paper describes the University of Washington’s submis-
sion to the IWSLT 2006 evaluation campaign. We present
a multi-pass statistical phrase-based machine translation sys-
tem for the Italian-English open-data track. The focus of our
work was on the use of heterogeneous data sources for train-
ing translation and language models, the use of several novel
rescoring features in the second pass, and exploiting N-best
information for translation in the ASR-output condition. Re-
sults show mixed benefits of adding out-of-domain data and
using N-best information and demonstrate improvements for
some of the novel rescoring features.

1. Introduction
We present a two-pass statistical phrase-based machine trans-
lation system developed for the IWSLT 2006 evaluation. For
this task we concentrated on a single language pair, Italian-
English, and on the correct transcription and ASR-output
conditions. We used the ASR output provided and did not
produce our own ASR hypotheses from the raw speech data.
Since the BTEC task is a sparse-data task, our focus for this
evaluation was on exploring the use of heterogeneous data
sources for training. In addition, we investigated several
novel features for rescoring and the use of N-best informa-
tion for the ASR-output condition. This paper is structured as
follows: we first describe the data sources and preprocessing
used. Sections 4 and 5 describe first-pass hypothesis genera-
tion and second-pass rescoring. Postprocessing and spoken-
language specific processing are presented in Sections 6 and
7. We then present experiments and the official evaluation
results. Section 10 describes additional analyses performed
after the official evaluation and Section 11 concludes.

2. Data
The UW system participated in the open data track. For
training we used the BTEC Italian-English training data pro-
vided for this evaluation campaign, along with the devset1,
devset2, and devset3, resulting in approximately 190K words
of in-domain training data (including punctuation). In addi-
tion, we used the publicly available Europarl corpus of Ital-
ian/English [1] for training the translation model. This cor-

pus is very different from BTEC in that it contains edited
transcriptions of parliamentary proceedings; thus, the do-
main differs from that of a travel task, and the style is that of
written text. The size of the Europarl corpus is approximately
17M words. We also used the Fisher corpus for training cer-
tain second-pass language models. The Fisher corpus is a
collection of English conversational telephone speech cover-
ing a variety of speakers and topics. It consists of approxi-
mately 2.3M word tokens.

All development/evaluation was done on devset4, since it
was expected to be most similar to the test data. This set was
randomly split into a development set of 350 sentences and a
held-out set of 139 sentences.

3. Preprocessing

The BTEC data was preprocessed by first segmenting lines
with multiple sentences into single sentences according to the
punctuation. Punctuation was then removed and all words
were lowercased. The Europarl data was also lowercased
and sentence pairs with a length ratio greater than 9 were
removed. For the evaluation system, no additional prepro-
cessing was performed. After the official evaluation we at-
tempted to improve the use of the Europarl data by modifying
the English side to render it more similar to spoken language
style and modifying the Italian side to more closely match the
transcription conventions used in the BTEC corpus. All En-
glish sentence punctuation was removed, common English
contractions were added to 90% of the corpus, and abbrevi-
ations or titles were punctuated. For example, the sentence
thank you , mr segni , i shall do so gladly . became thank you
mr. segni i’ll do so gladly. In the Italian text, sentence punc-
tuation was also removed, apostrophes denoting contractions
were joined to the preceding part of the word, and common
abbreviations were expanded. For example, the sentence ...
condannare l ’ arresto della sig.ra gladys marin ed esigerne
l ’ immediata scarcerazione ? became ... condannare l’ ar-
resto della signora gladys marin ed esigerne l’ immediata
scarcerazione. However, these modification did not affect
translation performance significantly.
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4. First-Pass Translation System
We use a multi-pass statistical phrase-based translation sys-
tem based on a log-linear probability model:

e∗ = argmaxep(e|f) = argmaxe{

K∑

k=1

λkφk(e, f)} (1)

where e is and English and f a foreign sentence, φ(e, f) is
a feature function defined on both sentences, and λ is a fea-
ture weight. The first pass generates up to 2000 translation
hypotheses per sentence using the public-domain Pharaoh
decoder [2] and a combination of the following nine model
scores:

• two phrase-based translation scores
• two lexical translation scores
• data source indicator feature
• word transition penalty
• phrase penalty
• distortion penalty
• language model score

The first two of these are explained below (Section 4.1).
The word transition and phrase penalty are constant weights
added for each word/phrase used in the translation, thus
controlling the length of the translation. The distortion
penalty assigns a weight proportional to the distance by
which phrases are reordered during decoding; here, the dis-
tortion penalty is constant since monotone decoding is used
and no reordering is allowed. (Initial experiments show that
monotone decoding outperforms non-monotone decoding.)
Weights for these scores are optimized using the minimum-
error rate training procedure in [3]. The optimization crite-
rion is the BLEU score on the development set as defined
above (Section 2). The second pass rescores the first-pass
output with additional, more advanced model scores. A post-
processing step is then performed to restore true case and
punctuation.

4.1. Translation Model

The translation model is defined over a segmentation of
source and target sentence into phrases: f = f̄1, f̄2, ..., f̄M

and e = ē1, ē2, ..., ēM . Phrase pairs of up to length 7 are ex-
tracted from the training corpus which was previously word-
aligned using GIZA++. The extraction method is the tech-
nique described in [4] and implemented in [2]: the corpus is
first aligned in both translation directions, the intersection of
the alignment points is taken, and additional alignment points
are added heuristically. For each phrase pair, two phrasal
translation probabilities, P (f̄ |ē) and P (ē|f̄), are computed
(one for each direction) from the relative frequency estimate
on the training data, e.g.:

P (ē|f̄) =
count(ē, f̄)

count(f̄)
(2)

Two analogous lexical scores are computed, e.g.:

Scorelex(f̄ |ē) =
J∏

j=1

1

|{i|a(i) = j}|

∑

a(i)=j

p(fj |ei) (3)

where j ranges over words in phrase f̄ and i ranges over
words in phrase ē. Here, we use two phrase tables concomi-
tantly, one trained from each data source (BTEC and Eu-
roparl). We use the two phrase tables jointly, without renor-
malization of probabilities. An additional binary feature
in the log-linear combination indicates which data source
a given phrase pair comes from. However, the feature was
shown to not have a significant impact on translation perfor-
mance and is omitted for the second pass optimization.

4.2. Language Model

The first-pass language model is a trigram trained on the En-
glish side of the BTEC training set using modified Kneser-
Ney smoothing. Further language models used during
rescoring are described below.

5. Rescoring
The rescoring stage uses the first pass model scores along
with five additional scores, as described below. Scores are
again combined according to a log-linear model. Combi-
nation weights are trained to maximize the BLEU score
on the development set using a downhill simplex search
(i.e. amoeba search) [5]. The five additional scores are:

• a 4-gram language model score
• a POS n-gram score
• rank in N-best list
• Factored Language Model score ratio, and
• focused language model score

The last three are novel features in our system.

4-gram language model score (lm)
This is the score of a 4-gram language model trained on the
English side of the BTEC training corpus using modified
Kneser-Ney smoothing.

POS n-gram model score (pos)
The part-of-speech (POS) sequence of a given target sen-
tence can be indicative of the sentence’s syntactical well-
formedness and thus translation fluency. Although it was
cautioned in [6] that applying POS taggers directly to MT
hypotheses may generate unexpected results (e.g. inserting
a verb tag when there is no verb in the sentence), in prac-
tice we have found it useful to apply a POS language model
to our N-best lists. We obtain POS annotations by applying
the Maximum Entropy tagger of [7]. This tagger has been
trained on the Wall Street Journal corpus; we apply it di-
rectly to our training set and N-best lists. In order to increase
the training data for the POS n-gram we also used the Fisher
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Figure 1: Histogram of oracle 1-best ranks (correct transcrip-
tion condition).

corpus. Despite its different domain, this corpus also conver-
sational in style and POS-level information may be transfer-
able. We trained separate 5-gram POS language models on
the training set and the Fisher corpus and combined them via
interpolation.

Rank in N-best list (rank)
The first-pass decoder already generates high-quality N-best
lists, in which the oracle-best hypotheses are typically ranked
near the top of the list (as can be seen from the histogram in
Figure 1). Ideally, the second pass should be guided by the
ranking produced by the first-pass system. Moreover, the N-
best lists contain many duplicate hypotheses at different posi-
tions, since the same sentence can be generated by many dif-
ferent phrase segmentations. Knowledge of which hypothe-
ses are identical in terms of their word sequence should be
utilized for rescoring. We therefore use a rank feature that
(a) indicates the rank of a hypothesis in the first-pass N-best
list, and (b) ties together identical hypotheses. The value of
this feature is equivalent to the position of the hypothesis in
the N-best list unless an identical, higher-ranked hypothesis
has already been found. In that case, it takes on the value of
the higher-ranked hypothesis. An example N-best list with
ranks for each hypothesis is as follows:

1. the store is open on sundays (rank:1)
2. the store is open on sundays (rank:1)
3. the shop is open on sundays (rank:2)
4. the store is open on sundays (rank:1)
5. the store is it open on sundays (rank:3)

For our experiments, we slightly modified the above rank
feature by applying a log function to the raw values. This
bounds the features to a smaller range, similar to that of other
features in the log-linear combination. We found that this did
slightly better in our experiments than raw integer ranks. As
shown in experiments (Section 8), the rank feature, is con-
sistently the most useful feature in rescoring despite its sim-
plicity.
Ratio of Factored Language Model scores (ratio)
Factored Language Models (FLMs) [8] are a flexible lan-

guage modeling framework that can incorporate diverse
sources of information, such as morphology, POS tags, etc.
Previous experiments on using FLMs to rescore machine
translation N-best lists have seen mixed results: little gain
was shown for translation into English [9] but larger gains
were shown for translation into Spanish, a morphologically
richer language, especially under mismatched conditions
[10]. Here, we use FLMs with three sources of informa-
tion: words, part-of-speech, and data-driven word clusters
in a trigram context. Word clusters were obtained by Brown
clustering [11] using 500 word classes.

In this work, we apply FLMs to rescore English, but im-
prove upon previous attempts by using two FLMs together in
a discriminative fashion. In order to train the backoff struc-
ture and smoothing options of an FLM we use a genetic al-
gorithm [12]. This requires a held-out set for iteratively opti-
mizing the model parameters. While normally the references
for some development set would be used for this purpose,
in the context of machine translation we use the oracle-best
hypotheses from the first pass, to ensure that the model is
optimized on hypotheses that are likely to result in a good
BLEU score. Here, we form two held-out sets, one consist-
ing of the set of oracle best hypotheses from the N-best lists,
and the other consisting of the set of oracle worst hypothe-
ses from the N-best lists. The FLM optimized on the ora-
cle best hypotheses should give high probability to sentences
with high BLEU scores, while the FLM optimized on the or-
acle worst sentences will give high probability to sentences
with low BLEU scores. The score used for rescoring then
is φratio(e) = FLM1(e)

FLM2(e)
, where FLMi(e), i = 1, 2 is the

probability of sentence e evaluated by the first and second
FLMs, respectively. This method is analogous to the “split-
ting” technique used in [13], which divides the N-best list
into good and bad sentences for training a perceptron-style
learner. Our method differs in that instead of using a dis-
criminative classifier, we use two generative models (FLMs)
and take the log-probability ratio. This allows us to take ad-
vantage of the estimation techniques developed for language
models.

Focused LM (focus, focusF)
The focused language model is a dynamically generated lan-
guage model that focuses only on those words that occur in
the N-best list. During the training phase of rescoring, we
collect all the words in the N-best lists and use our training
data to estimate a 4-gram model restricted to this vocabu-
lary. This is done in order to force the language model to
better discriminate between those n-grams that actually oc-
cur in the first-pass N-best lists. During the testing phase of
rescoring, we again collect all words in the (test set) N-best
list and estimate another focused LM. The score in both cases
is the log-probability of each hypothesis assigned by the re-
spective focused LMs. Note that the weight for this score is
optimized jointly with all other scores on the development
set and is held fixed for the test set, although the language
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model itself changes. This may be a potential weakness;
further work remains on analyzing the extent to which the
language model and vocabulary differences affect rescoring.
We used two kinds of focused LM features in our experi-
ments. φfocus uses LMs trained on the BTEC training set
only, while φfocusF includes Fisher data as well.

6. Postprocessing

For postprocessing we use a hidden-event n-gram model
[14, 15] to restore punctuation and a noisy-channel model for
truecasing. The hidden-ngram model partitions the vocabu-
lary or event set E into two (possibly overlapping) subsets:
the set W of regular words and the set H of “hidden events”,
in this case the set of punctuation signs. During training, all
events are observed; thus, training a model that predicts the
joint probability of hidden and observed words is equivalent
to training a standard n-gram model on punctuated text:

P (e1, ..., eT ) ≈

T∏

t=n

P (et|et−1, ..., et−n+1) (4)

During testing, hidden events are hypothesized after every
word. Their posterior probability is computed by using
a forward-backward dynamic programming procedure and
the transition probabilities provided by the trained n-gram
model. The noisy-channel model consists of a 4-gram model
trained over a mixed-case representation of the BTEC train-
ing corpus and a probabilistic mapping table for lowercase-
uppercase word variants. It was implemented using the dis-
ambig tool from the SRILM package [16].

Finally, we also morphologically decompose and trans-
late unknown words, similar to the procedure described in
[10]. In the case of Italian, this means that cliticized pro-
nouns are detached from the end of the word before transla-
tion.

7. Spoken-Language Specific Processing

In order to take advantage of the additional information avail-
able for the ASR-output condition, we attempted to use the
ASR N-best lists provided (N = 20). We translated all N-best
hypotheses directly (producing M translation hypotheses per
input sentence) and optimized our system using the entire set
of N × M -best translations. Table 1 shows a comparison of
the BLEU and PER (position-independent word error rate)
scores obtained by the oracle hypotheses from both types of
input. As can be seen, the BLEU score improves by 2.7%
absolute and the PER decreases by 2.1%. However, in ini-
tial rescoring experiments we did not obtain an improvement
from the N ×M list, so that they were not used for the eval-
uation system.

However, further post-evaluation experiments using N-
best lists are described below.

BLEU (%) PER
1-best 44.1 34.7
N-best 46.8 32.8

Table 1: Oracle translation scores on 1-best vs. N-best ASR
hypotheses

8. Experiments
We first investigated how the coverage of phrases up to length
7 was changed by adding the Europarl data. Table 2 shows
the percentages of phrases in the development and test sets
for which a match can be found in the phrase tables trained
from a the different corpora. As can be seen, the coverage
of short phrases up to 3 words improves noticeably while the
coverage of longer phrases hardly changes. However, im-
proved coverage does not necessarily result in better trans-
lations since the translations for the newly covered phrases
may not match the references. The effect on actual transla-
tion performance on the development data is shown in Table
3. Both BLEU and PER are improved.

BTEC Europarl combined
1 84.0 (76.6) 88.3 (85.9) 94.0 (91.6)
2 40.8 (37.7) 48.1 (46.2) 60.1 (56.9)
3 13.6 (12.9) 11.9 (12.6) 20.1 (20.6)
4 3.4 (4.0) 1.5 (1.8) 4.5 (5.4)
5 1.1 (0.9) 0.2 (0.2) 1.3 (1.1)
6 0.3 (0.2) 0.0 (0.0) 0.3 (0.2)
7 0.1 (0.0) 0.0 (0.0) 0.1 (0.0)

Table 2: Coverage of phrases (in %) in the development set
(test set) for individual and combined training corpora (cor-
rect transcription condition).

BLEU (%) PER
BTEC only 44.5 29.9
+ Europarl 46.8 28.0

Table 3: First-pass translation performance with BTEC train-
ing data alone and with added Europarl data on the develop-
ment set (correct transcription condition).

8.1. Rescoring results

In the rescoring experiments we first tested the impact of
the added Fisher data for various language models. Table
4 shows that the Fisher data only gave a slight improvement
in BLEU score for the focused language model in the correct
transcription condition, PER scores did not change.

For finding the best combination of second-pass rescor-
ing features we begin by using the 9 features of the first-pass
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Features used in rescoring BLEU PER
base+lm w/o Fisher 44.9 31.0
base+lm w/ Fisher 44.8 31.0
base+pos w/o Fisher 45.8 30.8
base+pos w/ Fisher 45.9 30.8
base+focus (w/o Fisher) 44.4 31.3
base+focusF (w/ Fisher) 45.1 31.6

Table 4: Effect of added Fisher data on language model train-
ing. Scores shown are second-pass scores on the dev set (cor-
rect transcription condition) with baseline features and one
added language model feature.

system and iteratively add new features in a greedy fashion.
Tables 5 and 6 show the BLEU/PER scores of the correct
transcription and ASR-output conditions, respectively. In
both cases, the best individual feature among the five dis-
cussed above is rank, which yields noticeable improvements
of 1-2% absolute in BLEU and 1.8-2.3% PER. All other
rescoring features present mixed results when used in iso-
lation together with the first-pass features; some improve
BLEU but not PER. There also seem to be significant inter-
actions between the individual features; the best combination
of all 14 features improve both BLEU and PER significantly
compared to only using the first-pass features. A comparison
with the oracle scores also shows that there is still room for
improvement in the second-pass rescoring.

Features used in rescoring K BLEU PER
baseline features 9 44.81 30.8
base+focus 10 44.4 31.3
base+lm 10 44.9 31.0
base+ratio 10 45.0 31.4
base+focusF 10 45.1 31.6
base+pos 10 45.9 30.8
base+rank 10 46.8 28.5
base+rank+focusF 11 47.5 28.1
base+rank+focusF+pos 12 47.4 29.1
base+rank+focusF+pos+ratio 13 47.2 29.3
*base+rank+focusF+pos+ratio+lm 14 47.6 28.0
Comparison systems K BLEU PER
First-pass decoding n/a 46.8 28.0
Oracle 1-best in N-best list n/a 59.7 21.4

Table 5: BLEU and PER scores (%) for correct transcription
translation results (on the development set). K is the number
of feature used in rescoring. *The rescorer used in official
evaluation.

1The baseline rescorer starts out at a worse performance level than 1-
st pass decoding (e.g., 44.8 vs. 46.8 BLEU). This is because phrase table
scores are used differently in decoding vs. rescoring by the Pharaoh decoder
when multiple entries per phrase pair are present.

Features used in rescoring K BLEU PER
baseline features 9 34.6 39.6
base+focusF 10 34.3 40.9
base+lm 10 34.3 39.2
base+ratio 10 34.4 39.4
base+focus 10 35.2 39.8
base+rank 10 35.6 37.8
base+pos 10 35.7 40.0
base+pos+rank 11 36.1 37.4
base+pos+rank+ratio 12 36.6 37.6
base+pos+rank+ratio+focus 13 36.9 37.3
*base+pos+rank+ratio+focus+lm 14 37.0 37.8
Comparison systems K BLEU PER
1st-pass decoding n/a 35.4 37.3
oracle 1-best in N-best list n/a 46.5 31.2

Table 6: BLEU and PER scores (%) for ASR-output transla-
tion (on the development set). *The rescorer used in official
evaluation.

9. Results
The official evaluation results are shown in Tables 7 and 8.
Table 8 shows that our system almost always ranks highest
when evaluated on lowercase text and without punctuation.
However, when evaluated on true-case and with punctuation,
the systems shows stronger relative degradation than other
systems, suggesting that its post-processing component re-
quires further work. As expected, translation from ASR-
output is significantly worse than translation from the cor-
rect transcription, about 8 percentage points absolute in both
BLEU and PER.

BLEU PER WER NIST METEOR
Correct Transcription

case/punc 35.43 38.92 48.34 8.19 70.17
without 42.06 31.75 42.86 9.24 70.19

ASR-Output
case/punc 27.87 46.76 55.87 6.93 58.53
without 31.68 42.11 53.17 7.69 58.53

Table 7: Official evaluation results. case/punc = with case
and punctuation taken into account, without = without case
or punctuation.

10. Post-Evaluation Analyses
10.1. Data

With the exception of separate weight optimization runs, the
system used for the ASR-output condition was identical to
that used for the correct transcription condition. After the
official evaluation we conducted additional experiments to
further optimize the ASR-output system. First, we looked at
the impact of adding data separately for this system. Tables 9
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BLEU PER WER NIST METEOR
Correct Transcription

case/punc 3 1 3 1 1
without 1 1 1 1 1

ASR-Output
case/punc 5 4 4 1 1
without 2 1 1 1 1

Table 8: Rank out of 11 submissions, according to official
evaluation results.

and 10 are analogous to Tables 2 and 3 above and show that,
contrary to the correct transcription condition, the Europarl
data only helps the PER score slightly but actually degrades
BLEU. A similar analysis for the added language model data
also shows a different pattern than for the correct transcrip-
tion condition: only the POS n-gram was improved slightly
by the Fisher data, the other language models deteriorated
(see Table 11).

BTEC Europarl combined
1 84.0 (81.0 ) 87.7 (88.1) 94.6 (94.9)
2 38.9 (36.2) 43.0 (41.9) 54.7 (52.4)
3 13.6 (12.3) 9.9 (10.4) 19.1 (18.2)
4 4.2 (3.6) 1.0 (1.3) 4.9 (4.6)
5 1.4 (0.9) 0.2 (0.2) 1.6 (1.0)
6 0.4 (0.1) 0.0 (0.0) 0.4 (0.1)
7 0.2 (0.0) 0.1 (0.0) 0.2 (0.0)

Table 9: Coverage of phrases (in %) in the development set
(test set) for individual and combined training corpora (1-
best ASR output).

BLEU (%) PER
BTEC only 36.5 38.0
+ Europarl 35.4 37.3

Table 10: First-pass translation performance with BTEC
training data alone and with added Europarl data on the de-
velopment set - 1-best ASR output.

10.2. Confusion Networks

As an alternative to direct N-best translation we investigated
the use of confusion network representations to transform the
ASR-output hypotheses. Confusion networks [17] are a com-
pact representation of multiple sentence hypotheses derived
from a word lattice or an N-best list. They take the form of a
connected graph with a designated start and end node, where
edges between nodes represent different competing word hy-
pothesis for a given position in the sentence (see Figure 2).
In addition, edges associated with posterior probabilities of

Features used in rescoring BLEU PER
base+lm w/o Fisher 34.3 39.2
base+lm w/ Fisher 34.1 39.6
base+pos w/o Fisher 35.4 40.2
base+pos w/ Fisher 35.7 40.0
base+focus (w/o Fisher) 35.2 39.8
base+focusF (w/ Fisher) 34.3 40.9

Table 11: Effect of added Fisher data on language model
training. Scores shown are second-pass scores on the dev set
(ASR-output) with baseline features and one added language
model feature.

BLEU (%) PER
1-best from recognizer 36.5 38.0
1-best from confusion net 37.4 37.7
+ second-pass rescoring 38.0 36.8

Table 12: Translation performance based on 1-best ASR-
output vs. 1-best hypothesis selected from confusion network
representation of recognizer N-best list (dev set).

the word hypotheses. In order to construct a confusion net-
work from an N-best list, all N-best hypotheses are aligned
into a grid of word positions defined by the first hypothe-
sis. The posterior probabilities are then obtained by the fre-
quency count of a given word label in that position relative
to the total count of words in that position.

volumi 0.4

volume 0.4

voluto 0.2

regolare 1.0e  0.7

para 0.5o 0.3

per 0.5

Figure 2: Confusion network.

Confusion networks have been used in machine transla-
tion in order to e.g. combine the output from multiple trans-
lation systems [18] or to perform translation directly from a
confusion network instead of a word lattice or an N-best list
[19]. Here, we use a confusion network to obtain better ASR
input hypotheses; however, translation is still done from a
single hypothesis per sentence. Having obtained the poste-
rior probabilities, we construct a new 1-best hypothesis by
choosing the highest-probability word at each position. This
may result in more reliable hypotheses as well as hypothe-
ses that were not in the original N-best list. The translation
results on the development set (Table 12) show an improve-
ment compared to the previous system.

Translation was then rerun on the test set with the im-
proved data selection and confusion network based selection
of input hypotheses. However, results on the test set did not
improve compared to the official evaluation results. Further

paul
  150



analysis of this is being performed.

11. Conclusions
We have presented a multi-pass phrase-based SMT system
for the Italian-English BTEC translation task. Our focus was
on adding out-of-domain data to both the translation and the
language model, novel features for rescoring, and using N-
best information for ASR-output translation. Our conclu-
sions are:

1. Adding data from different domains and styles is of
mixed benefit. Data from parliamentary proceedings
mostly helped the translation model for the correct
transcription input condition. Additional English con-
versational data of a general nature did not for the most
part improve the various target language models.

2. Of the several new features used during rescoring (fac-
tored language model score ratio, focused LM, rank in
N-best list), several features showed small gains, espe-
cially in combination. The rank feature clearly yields
a significant improvement by itself.

3. With respect to using N-best information for ASR-
output translation, we found that direct translation
of N-best lists was not useful. Confusion network
based selection of 1-best input hypotheses was helpful
on the development data but did not yet show any
improvement on the test set.
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