ENSEMBLE METHODS FOR CONNECTIONIST ACOUSTIC MODELLING

G.D. Cook S.R. Waterhouse A.J. Robinson

Cambridge University Engineering Department
Trumpington Street, Cambridge, UK.

ISCA Archive
http://www.isca-speech.org/archive

ABSTRACT

In this paper we investigate a number of ensemble methods for improving the performance of connectionist acoustic models for large vocabulary continuous speech recognition. We discuss boosting, a data selection technique which results in an ensemble of models, and mixtures-of-experts. These techniques have been applied to multi-layer perceptron acoustic models used to build a hybrid connectionist-HMM speech recognition system. We present results on a number of ARPA benchmark tasks, and show that the ensemble methods lead to considerable improvements in recognition accuracy.

1. INTRODUCTION

When developing a classification or prediction system it is common practice to train a number of different models, and to retain the model which exhibits the best performance on a cross-validation data set. However, reports in the statistics and neural network literature suggest that improved performance can be achieved by combining the estimates of all the available models [1, 2, 3, 4]. Systems that form their estimate from the estimates of a number of different models are termed ensembles or committee machines. Ensembles of connectionist models have been applied to tasks ranging from optical character recognition [5] to analysis of satellite images [6], and have been shown to provide improvements in out-of-sample accuracy.

It has been shown that for best results the individual models which comprise an ensemble should not only demonstrate as low an error rate as possible, but should also make their errors in different regions of the input space [9, 10]. A simple method for building an ensemble is bagging [11] in which the training data is uniformly sampled with replacement to produce different training sets for the ensemble models. The expectation is that because the models are trained on different data sets they will pick out different properties present in the data, thus improving the performance when their outputs are combined.

This paper compares the performance of two types of ensemble techniques when used for connectionist acoustic modelling. The two techniques described are boosting [7] and mixtures-of-experts [8]. Boosting and mixtures-of-experts differ from simple ensemble methods. In boosting, each member of the ensemble is trained on patterns that have been filtered by previously trained members of the ensemble. In mixtures, the members of the ensemble, or experts, are trained on data that is stochastically selected by a gate which additionally learns how to best combine the outputs of the experts.

The boosting algorithm has been applied successfully to speech recognition for a small isolated digit task [12], and for large vocabulary recognition, in which a modified form of boosting was used to produce ensembles of recurrent neural networks [13]. In this paper we will describe how we use a combination of boosting and mixtures to improve recognition accuracy.

We first introduce boosting. This includes some background and a detailed description of the algorithm. The mixtures-of-experts architecture and learning algorithm is then described. The ensemble methods are used to produce multi-layer perceptron (MLP) models. These MLPs are used for acoustic modelling in a large vocabulary, hybrid connectionist-HMM continuous speech recognition system, and this is described in Section 4. We then present results on a number of ARPA benchmark tasks for both boosting, and a combination of boosting and mixtures-of-experts.

2. BOOSTING

Boosting is an algorithm that, under certain conditions, allows one to improve the performance of any learning machine, and was first designed in the context of the distribution free, or probably approximately correct (PAC) model of learning [14]. In the distribution free model (also known as the strong learning model), the learner must be able to produce a hypothesis with an error of at most ϵ, for arbitrarily small values of ϵ. Because the learner is receiving random examples there is also the possibility that the learner will receive an outlier (an example that is highly unrepresentative). The strong learning model therefore only requires that the learner succeeds in finding a good approximation to the target function with probability at least $1-\delta$, where δ is an arbitrarily small constant.

In a variation of the distribution free model, called the weak learning model, the requirement that the learner must produce hypotheses with an error rate at most ϵ is relaxed. The learner is required to produce hypotheses with error rate slightly less than 0.5. Thus the weak learning model requires that the learner be able to produce hypotheses that perform only slightly better than random guessing.

The main result of [14] is a proof that the strong and weak learning models are actually equivalent. A provably correct technique is given for converting any learning algorithm that performs only slightly better than random guessing into one that produces hypotheses with arbitrarily small error rates. The technique creates an ensemble hypothesis from three sub-hypotheses each trained on different distributions. Applying the technique recursively allows the error rate to be made arbitrarily small. In practice this is impossible because the algorithm quickly runs out of training data.

The boosting procedure used here is as follows: train a network on a randomly chosen subset of the available training data. This network is then used to filter the remaining training data to produce a training set for a second network. Flip a fair coin. If heads, examples are passed through the first network until it misclassifies a pattern, and this pattern is added to the second train-
The posterior phone probabilities estimated by the acoustic model are used as estimates of the observation probabilities in an HMM framework. Given new acoustic data and the connectionist-HMM framework, the maximum a posteriori word sequence is extracted using the noway decoder. Noway is a single pass, start-synchronous stack decoder designed to exploit the features of the hybrid connectionist-HMM approach [18]. A more complete description of the system can be found in [19].

![Diagram](image_url)

Figure 1: The AAROT hybrid connectionist-HMM speech recognition system with an MLP ensemble acoustic model.

The acoustic representation used is twelfth order perceptual linear prediction cepstral coefficients [20] plus energy. To capture dynamic information the acoustic features are augmented with first order difference parameters. The combination of acoustic features and difference parameters forms a frame. An input window of nine contiguous frames is used to capture contextual information, with the central frame of the window given by the current observation. The hidden units of the network use a logistic activation function, while the output units use a softmax activation function. The cross-entropy error criterion is used during training.

5. Experiments and Results

This section describes the experiments and presents results. The data used for both training and testing is first described. The results of experiments to evaluate bootstrapping are then presented. We then assess the performance of a mixtures-of-experts architecture which is bootstrapped from a boosting ensemble.

The training data used for the experiments is the short term speakers from the Wall Street Journal corpus. This consists of approximately 36,400 sentences from 284 different speakers (5128). The ensemble methods have been evaluated on a number of different ARPA benchmark tasks. A brief description of these tasks is given below.

dt5.93

November 1993 Spoke 5 development test set. This
is a 5000 word, closed vocabulary test. The system uses the standard ARPA bigram language model. The results reported here are for the close-talking Sennheiser microphone only.

dt_s693

November 1993 Spoke 6 development test set. This is also a 5000 word, closed vocabulary test, and the system uses the standard ARPA bigram language model.

et_J12693

November 1993 Hub-2 evaluation test set. Also a 5000 word closed vocabulary task. The system uses the standard ARPA trigram language model.

et_J11993

November 1993 Hub-1 evaluation test set. This is a large vocabulary task, the prompting texts for which are from the Wall Street Journal. 64k word texts pools. The system uses a 20k-word vocabulary, and a trigram language model built using 35 million words of text from the WSJ0 corpus.

et_J11994

November 1994 Hub-1 evaluation test set. This is an open-vocabulary task, which includes prompts from various newspaper sources, including the Wall Street Journal, the Los Angeles Times, the Washington Post, and the New York Times. The system uses a 64k-word vocabulary and a language model built using 237 million words from the CSR-LM-1 corpus [21].

5.1. Boosting Evaluation

The boosting algorithm described in Section 2 has been used to produce an ensemble of MLP acoustic models. The first network is trained on 1.5 million frames randomly selected from the available training data (approximately 15 million frames). This is then used to filter the unseen training data to select frames for training the second network. The first and second networks are then used to select data for the third network as described in Section 2.

The distribution of phone classes in the training data for an acoustic model should be representative of the distribution of phone classes in the test data. This ensures that the network produces accurate posterior probability estimates. The data selection process alters the prior distribution of phone classes in the training data. Therefore, the new estimate must be modified to account for the altered priors. The modified Bayes’ theorem is conditioned on the training data:

\[P'(q_i | \mu_t) = \frac{P(q_i | \mu_t) P_{\text{test}}(q_i)}{P_{\text{test}}(q_i)} \]

where \(P(q_i | \mu_t) \) is the estimated posterior probability of phone class \(i \) at time \(t \), \(P_{\text{max}}(q_i) \) is the prior for phone class \(i \) in the training data, and \(P_{\text{test}}(q_i) \) is the prior for phone class \(i \) in the test data. Of course \(P_{\text{test}}(q_i) \) is dependent on the test set, and is not known. \(P_{\text{test}}(q_i) \) is therefore estimated form the entire S280 training set. \(P'(q_i | \mu_t) \) is then normalised to ensure that it is a proper distribution.

The boosted acoustic models have been combined using two different methods. In the first of these, the ensemble output is formed as follows: if networks one and two classify the input frame as the same phone, the output of network one is used as the observation probabilities in the HMM as described in Section 4. If the networks disagree on the classification of the input frame, the output of network three is used as the observation probabilities. This method is denoted vote. The second method, denoted average, forms a simple average of the network outputs, and this average is used as the observation probabilities.

<table>
<thead>
<tr>
<th>Model</th>
<th>WER</th>
<th>WER Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single MLP</td>
<td>18.6%</td>
<td></td>
</tr>
<tr>
<td>Boosted (vote)</td>
<td>14.6%</td>
<td>3.7%</td>
</tr>
<tr>
<td>Boosted (average)</td>
<td>12.9%</td>
<td>5.3%</td>
</tr>
</tbody>
</table>

Table 1: Performance of boosted MLP acoustic models on the 1993 Hub 2 evaluation test set.

Table 1 shows results on the November 1993 Hub 2 evaluation test set. As can be seen boosting has considerably reduced the word error rate when compared to a single MLP acoustic model. The word error rate reductions are statistically significant at \(p = 0.05 \), using a two-tailed t-test with the null hypothesis that there is no performance difference between the single MLP and the boosting methods. The ensemble which uses the linear average to combine the models is also significantly better that the voting scheme at \(p = 0.05 \). All the significance tests were performed using the NIST package score v3.6.2, and the matched pair sentence segment (word error) test.

<table>
<thead>
<tr>
<th>Test Set</th>
<th>Word Error Rate</th>
<th>WER Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>dt_s693</td>
<td>20.4%</td>
<td></td>
</tr>
<tr>
<td>dt_s693</td>
<td>17.7%</td>
<td>14.8%</td>
</tr>
<tr>
<td>et_J11993</td>
<td>25.2%</td>
<td>21.8%</td>
</tr>
<tr>
<td>et_J1194</td>
<td>24.7%</td>
<td>20.7%</td>
</tr>
</tbody>
</table>

Table 2: Evaluation of the performance of boosting MLP acoustic models.

The performance of the boosted MLP ensemble and the linear average combination scheme has also been evaluated on a number of ARPA benchmark tests. The results are summarised in Table 5.1. As can be seen, boosting has resulted in considerable improvements in performance for all of the test sets. In each case the system with boosted ensemble acoustic models performs significantly (at \(p = 0.05 \)) better than the system which uses a single MLP acoustic model.

5.2. Combining Boosting and Mixtures-of-Experts

In order to improve the performance of the ensembles further, three methods were investigated. Each of these focused on the use of mixtures-of-experts to combine the ensemble members.

In the first experiment, the boosted models were combined using a gating network which was retrained on the training data, with the boosted models held fixed. Two methods of training the gate were investigated: using winner take all (WTA) in which the best performing ensemble is assigned probability 1.0 and the rest 0.0, and a soft assignment scheme [8]. It was found, however that neither method offered an advantage over a simple linear combination (results not shown). The reason for this may be that the set of combination rules to be learnt by the

\[\text{Table 1: Performance of boosted MLP acoustic models on the 1993 Hub 2 evaluation test set.} \]

\[\text{Table 2: Evaluation of the performance of boosting MLP acoustic models.} \]

\[\text{The NIST testing software is available via anonymous ftp from ftp://jaguar.ncsl.nist.gov/pub/score3.6.2.tar.z.} \]
gate is too complex, or that the assumption of veridical responsibilities [22] is violated in the ensemble members.

The final pair of experiments compared two techniques, training a mixture of experts from a flat start on the entire training data (denoted Mixed in Table 5.1) and using the boosted models as a bootstrap for a mixture-of-experts (denoted Boost+Mixed in Table 5.1) and re-training on the entire training data. As can be seen from the table, the performance of the mixtures trained from a flat start (Mixed) was comparable with the Boosting method. However, the Boost+Mixed method gave an additional improvement over the Boosting, which was significant at the p=0.05 level. The reason for the failure of the flat start mixtures is unclear. However, it is clear that the use of an appropriate bootstrap, such as the boosted ensemble is important in obtaining well trained models for the mixtures. This result is consistent with the concept of using k-means as a bootstrap for Gaussian mixtures trained with EM.

<table>
<thead>
<tr>
<th>Test Set</th>
<th>Word Error Rate</th>
<th>Boosting</th>
<th>Mixed</th>
<th>Boost+Mixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>dt50_93</td>
<td>16.5%</td>
<td>17.3%</td>
<td>14.2%</td>
<td></td>
</tr>
<tr>
<td>dt56_93</td>
<td>14.8%</td>
<td>14.5%</td>
<td>11.5%</td>
<td></td>
</tr>
<tr>
<td>et10_93</td>
<td>12.9%</td>
<td>13.1%</td>
<td>10.9%</td>
<td></td>
</tr>
<tr>
<td>et13_91</td>
<td>20.7%</td>
<td>20.5%</td>
<td>16.7%</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Evaluation of the performance of mixture-of-experts acoustic models

6. SUMMARY

This paper has described two ensemble methods, boosting, and mixture-of-experts. These methods have been used to produce connectionist acoustic models, and have been shown to improve recognition performance by up to 33%.

7. ACKNOWLEDGEMENTS

This work was partially funded by ESPRIT project 2007 SPRACH. One of the authors (S.R. Waterhouse) is funded by an EPSRC grant.

References