Weighted Determinization and Minimization for Large Vocabulary Speech Recognition

Mehryar Mohri
mohri@research.att.com

Michael Riley
riley@research.att.com

AT&T Labs – Research, 180 Park Avenue, Florham Park, NJ 07932-0971, USA

ABSTRACT
Speech recognition requires solving many space and time problems that can have a critical effect on the overall system performance. We describe the use of two general new algorithms [5] that transform recognition networks into equivalent ones that require much less time and space in large-vocabulary speech recognition. The new algorithms generalize classical automata on the alphabet set with a label on each of the networks used in speech processing, and it leads to deterministic networks that are in general much more compact than trees.

2. ALGORITHMS

2.1. WEIGHTED DETERMINIZATION

The advantage of weighted determinization is clear: the use of the deterministic output is much more efficient than that of a non-deterministic one. A deterministic weighted automaton is said to be deterministic if each state of a network there might be several thousand alternative outgoing arcs, many of them with the same label. This nondeterminism directly affects the speed of large vocabulary speech recognition systems. The determinization algorithm allows one to address exactly this problem by reducing the alternatives at each state to the minimum. In other words, the deterministic result of the algorithm contains at each state at most one transition labeled with any given element of the alphabet considered (words, phonemes, etc.). Other related work has been done to reduce that redundancy using deterministic trees in particular lexical trees [9, 10, 11]. The general deterministic algorithm that we present differs from those approaches by the following: it does not require that networks be constructed as trees, it applies to all networks used in speech processing, and it leads to deterministic networks that are in general much more compact than trees.

The determinization algorithm is not an approximation, a pruning or a heuristic. Its result is exact: for each string, the weight (likelihood) of the best path for that string is the same in the original and in the determinized network. We describe the application of determinization to several distinct tasks: the reduction of the size and the improvement of the speed of word lattices, a very substantial increase of the speed of large vocabulary systems on the DARPA North American Business task (NAB), and a new task consisting of real-time discrimination among one million surnames (the One Million Names task). Our results show the benefits of using determinization in all of those tasks. The size of the deterministic networks used in speech recognition can be reduced to the minimum using the weighted determinization algorithm. We also report the result of the application of this algorithm in the NAB and the One Million Names tasks.
label matching the input.

We consider here the common case in speech recognition, where
the weights are interpreted as (negative) logarithms of probabil-
ities. The weight of a path is obtained by adding the weights of
its transitions. The output associated to an accepted input string
is the minimum of the weights of all paths corresponding to that
string. The case where weights are interpreted as probabilities
can be treated similarly.

Figure 2 gives the result of weighted determinization for the in-
put automaton A_1. The two automata A_1 and A_2 realize exactly
the same function: they associate the same output weight to each
input string. As an example, there are two paths corresponding
to the input string ae in A_1. The corresponding weights are:
$\{1 + 8 = 9, 3 + 11 = 14\}$. The minimum 9 is also the output
associated by A_2 to the string ae. This is a general characteristic
of determinization: the resultant weighted automaton is equiva-
 lent to the input.

![Figure 2: Equivalent weighted automaton A_2 obtained by weighted determinization from A_1.](image)

The algorithm is close to the classical powerset construction for
unweighted automata\(^5\). However, since transitions with the same
input label can have different weights, one can only output the
minimum of these weights and needs to keep track of leftover
weights. Therefore, the states of the output of weighted deter-
minization are subsets of the set of pairs $\{(q, w)\}$, where q is a
state of the input automaton and w the leftover weight.

The initial subset is $\{(i, 0)\}$, where i is the initial state of the
input automaton. For example, for automaton A_1, the initial subset
$\{(0, 0)\}$. Each new subset S is processed in turn. For each ele-
ment of the alphabet α labeling at least one transition leaving a
state of S, a new transition l leaving S is constructed in the out-
put machine. The label of l is α and its weight is the minimum of
the sums $w + l$ where w is the weight of an α-transition leaving
a state s in S and l is s's leftover weight. The destination state
of the l is the subset S' made of pairs (q, w), where q is a state
reached by a transition labeled with α from a state of S, and w
is the appropriate leftover weight.

As an example, the state 0 in A_2 corresponds to the initial sub-
set $\{(0, 0)\}$ constructed by the algorithm. The transition leaving
0 in A_2 labeled with a is obtained by considering the two tran-
sitions labeled with a leaving the state 0 in A_1. Its weight is
obtained by taking the minimum of the weight of these two trans-
itions. Its destination state is the subset $S' = \{(1, 1 - 1 = 0), (2, 3 - 1 = 2)\}$ numbered 1 in A_2.

Note that the order of expansion of the output automaton does
not affect the result. Further, the work done for a given subset
S depends only on the elements of S and not on the previous or
future work for other subsets. This is an interesting feature of
weighted determinization because it makes it possible to give an
on-the-fly implementation of the algorithm. Only states and trans-
sitions required by the search algorithm are expanded for a given
input string. This plays an important role in the implementation
of an efficient n-best decoder and in other applications where
one does not wish to expand the entire automaton.

2.2. Weighted Minimization

Any deterministic automaton can be minimized using classical
algorithms [1, 13]. In the same way, any deterministic weighted
automaton A can be minimized using our minimization algo-

The resulting weighted automaton B is equivalent to the automa-
on A. It has the minimal number of states and the minimal num-
ber of transitions among all equivalent deterministic weighted
automata equivalent to A.

The weighted minimization algorithm is very efficient. Its time
complexity is equivalent to that of the classical minimization,
linear in the acyclic case ($O(|Q| + |E|)$), and in $O(|E| \log |Q|)$
in the general case, where Q is the set of states of A and E the
set of transitions.

![Figure 3: Equivalent weighted automaton B_2 obtained by pushing from A_2.](image)

Consider the deterministic weighted automaton A_2. One can
view it as an unweighted automaton by considering each pair
(α, w), made of a label α and a weight w, as a single label, and
then apply the classical minimization algorithm to it. But, since
the pairs are all distinct, classical minimization would have no
effect on the automaton A_2.

The size of A_2 can still be reduced using (true) weighted min-
imization. The algorithm works in two steps: the first pushes
weight among arcs, and the second applies the classical mini-
imization algorithm to the result with each distinct label-weight
pair viewed as a distinct symbol, as described above.

![Figure 4: Equivalent weighted automaton A_3 obtained by weighted minimization from A_2.](image)

The pushing step moves the weights of the input automaton to-
wards the initial state as much as possible. This does not change
the topology of the input automaton and produces an equivalent
automaton. Figure 3 shows the result of pushing for the input
A_2. Thanks to pushing, the size of the machine can then be re-
duced using classical minimization.

Figure 4 illustrates the result of the final step of the algorithm.

\(^5\)The powerset construction is based on the idea that each state of
the deterministic automaton corresponds to a set of states of the original
non-deterministic one [2].
Table 1: Word lattices in the ATIS task.

<table>
<thead>
<tr>
<th></th>
<th>Determinization</th>
<th>Determinization + Minimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objects</td>
<td>Reduction factor</td>
<td>Reduction factor</td>
</tr>
<tr>
<td>States</td>
<td>≈ 3</td>
<td>≈ 5</td>
</tr>
<tr>
<td>Transitions</td>
<td>≈ 9</td>
<td>≈ 17</td>
</tr>
<tr>
<td>Paths</td>
<td>> 2^{n^2}</td>
<td>> 2^{n^2}</td>
</tr>
</tbody>
</table>

No approximation or heuristic is used: the resulting automaton A_2 is equivalent to A_1.

3. EXPERIMENTS AND RESULTS

We have given an efficient implementation of weighted determinization (on-the-fly) and weighted minimization. These programs are currently used in speech processing projects at AT&T Labs and at Lucent Bell Laboratories. In the following sections, we describe their use in several speech recognition tasks and report the corresponding results of our experiments. The results show their efficiency and the importance of their use in all these tasks.

3.1. WORD LATTICES

We applied weighted determinization to the word lattices obtained in the ARPA ATIS task. This not only made the use of the word lattices more efficient by removing their redundancy, but also led to an average reduction of their size by a factor of 9 (table 1).

Figures 5-6 illustrate the weighted determinization in a specific case. Figure 5 corresponds to a word lattice W_1 obtained in speech recognition for the 1,500-word ATIS task. It corresponds to the following utterance: Show me the flights from Charlotte to Minneapolis on Monday. Although it is one of the smallest word lattices obtained in this task, W_1 is very complex. It contains more than 151 million paths.

Weighted determinization applies to this lattice. This clearly improves the speed of the use of the lattice for search or matching purposes. It also reduces the size of the original network by reducing its redundancy. The resulting deterministic lattice W_2 only contains 18 paths (figure 6). As mentioned previously, the result is exact: the two lattices realize exactly the same function. The algorithm is very efficient: it took about 0.06s real time including I/O’s (reading and writing the networks) to determinize the lattice W_1 on an SGI O2 174 MHz IP32.

The minimization of weighted automata allowed us to reduce further the size of the deterministic weighted automata. The total reduction factor corresponding to the use of determinization and minimization in the ATIS task was about 17 on the average for the word lattices that we used (table 1).

We also applied weighted minimization to deterministic word lattices obtained in the NAB task. On the average, it reduced by a factor of 3 the size of those lattices.

Figure 7 illustrates the use of the minimization algorithm applied to the deterministic network W_2. The resulting machine W_3 has the least number of states and transitions among all equivalent deterministic networks. Let us insist that the minimization algorithm is also an exact algorithm: it is not a heuristic or an approximation; the minimal network contains exactly the same best paths with exactly the same labels and total weights. The algorithm is very efficient: it took about 0.7s to minimize the word lattice W_2, including I/O (which take most of this time) on the same computer.

3.2. THE NAB TASK

In most recognition systems, the words in a language model are (in effect) substituted with their pronunciations to create a large phonemic network. The phonemic network created in this way can have a high degree of nondeterminism in large vocabulary systems. This remains true even when using the efficient finite-state composition techniques that lead to more compact results [7, 14], rather than simple substitution.

The phonemic network can contain states with as many (or more) outgoing arcs as the size of the vocabulary. This large number of alternatives can considerably reduce the speed of a recognition system. Weighted determinization (of weighted transducers) allows one to improve the recognition time by reducing the number of alternatives to the minimum. The number of outgoing arcs in the equivalent deterministic network is at most equal to the number of phones (about 40) versus the size of the vocabulary ($\approx 20,000$) in the original network.

4 Strictly speaking, the phonemic network based on a n-gram model would have an inherent non-determinism due to the backoff model and to fact that a word can be a prefix of another word, in particular homophones. We have solved this by treating epsilons as regular...
Our experiments in the DARPA North American Business task (NAB) show that weighted determinization plays an important role in building a real-time large vocabulary speech recognition system: it reduces recognition time by a factor of 91.7, reduces the error rate in half, reduces the the size of the network by a factor of 3.3 and and the memory used by a factor of 8.8 (Table 2).

3.3. THE ONE MILLION NAMES TASK

The determination of weighted automata also allowed us to build a real-time system for the recognition of the one million most frequent U.S. surnames found in the Donnelley direct marketing list. We used the frequency of the surnames to assign probabilities to the mapping of pronunciations to names. A priori, in some states such as the initial state of the pronunciation network, one million alternatives were possible and the recognition would be very slow. The use of the weighted determinization substantially reduced the number of alternatives by limiting it to the number of phones, and led to a real-time recognition system.

We also used the weighted minimization algorithm after determination in this task to reduce the size of the networks used by a factor of 5.

4. CONCLUSION

The use of weighted determinization and minimization in large vocabulary speech recognition leads to very substantial improvements in performance. In addition, it shows the true degree of redundancy in speech recognition networks, which may not have been fully appreciated previously. In our speech recognition systems we also use another algorithm, local determinization, that reduces the redundancy of networks only locally. We report elsewhere on the benefits of local determinization for weighted transducers [8].

The success of the use of these algorithms does not come as a surprise. While most ASR systems use ad hoc solutions, thereby limiting the possibility of further improvement and understanding, we believe that general algorithmic solutions based on a sound theoretical foundation can lead to substantially better results.

5. Acknowledgments

We thank Fernando Pereira, Enrico Bocchieri, and Giuseppe Riccardi for discussions, and Andrej Ljolje and Hiyan Alshawi for supplying the ATIS word lattices we used.

6. REFERENCES

Table 2: Use of determinization in the NAB task.

<table>
<thead>
<tr>
<th></th>
<th>Reduction factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size of network</td>
<td>3.3</td>
</tr>
<tr>
<td>Recognition time</td>
<td>91.7</td>
</tr>
<tr>
<td>Error rate</td>
<td>2.0</td>
</tr>
<tr>
<td>Memory used</td>
<td>8.8</td>
</tr>
</tbody>
</table>

Table 3: Use of determinization and minimization in the One Million Names task.

<table>
<thead>
<tr>
<th></th>
<th>Reduction factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size of network</td>
<td>5.2</td>
</tr>
<tr>
<td>Recognition time</td>
<td>1000</td>
</tr>
</tbody>
</table>

symbols, using word boundary symbols (a distinct word boundary for each homophone), and removing the boundary symbols removed after determination.