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Abstract
All the components used in the search stage of speech recog-
nition systems – language model, pronunciation dictionary,
context-dependent network, HMM model – can be represented
by finite-state labeled networks. To construct real-time recog-
nition systems, it is important to optimize these networks and to
efficiently combine them. We present new methods that substan-
tially improve these steps. We show that an efficient recognition
network including context-dependent and HMM models can be
built using weighted determinization of transducers [6]. We re-
port experiments with a 463,331-word vocabulary North Amer-
ican Business News Task that show a substantial improvement
of the recognition speed over our previous method [9]. Further-
more, the size of the integrated context-dependentnetworks con-
structed can be dramatically reduced using a factoring algorithm
that we briefly describe. With our construction, the integrated
NAB network contains only about1:3 times as many arcs as the
language model it is constructed from.

1. Introduction
All the components used in the search stage of speech recog-
nition systems – language model, pronunciation dictionary,
context-dependent network, HMM model – can be represented
by finite-state labeled networks [9]. To construct real-time
recognition systems, it is important to optimize these networks
and to efficiently combine them. We outline new results that
substantially improve these steps.

Optimization of these networks is crucial. Indeed, these net-
works are often highlynon-deterministic– at a given state there
might be several thousand alternative outgoing arcs, many of
them labeled with the same input label. This redundancy directly
affects the performance of the search. The problem has been ad-
dressed by some authors usinglexical treesor other so-called
tree-basedrepresentations [1, 4, 10, 11]. We have presented op-
timal methods based on weighted transducer determinization for
eliminating such redundancies to address this problem [5, 6, 8].

It is also important to reduce the time required to combine these
networks. In the best case, the combination work could be done
beforehand, thus reducing to zero its contribution to the total
search.

In previous work, we have shown that using weighted transducer
determinization, one could optimize the networks correspond-
ing to the language model, the pronunciation dictionary, and the
context-dependency model and pre-combine them into a single
labeled network whose size was only about twice that of the lan-
guage model [9].

We present a new method that substantially improves the perfor-
mance of our previous system by additionally incorporating the
HMM state-level network into our optimization. We show that
all components of a very-large vocabulary speech recognition
system used in the search stage, including the acoustic model,

can be pre-combined to build an integrated recognition network
thus eliminating the combination time during the search. We
further show that, using additional disambiguation symbols, this
network can bedeterminized– at each state there is at most one
outgoing arc labeled with any given input label – thereby elimi-
nating the redundancy mentioned earlier.

To construct this optimized integrated network, we use weighted
transducer determinization at each step of the composition of
each two networks. We also use a newfactoringalgorithm that
considerably reduces the size of the resulting integrated network.

Our experiments in the North American Business News task
(NAB) with a 463,331-word vocabulary trigram language model
show that the resulting integrated recognition network is more
than two times smaller than the one obtained in our previous
system, and its word accuracy is about2:2% better (in absolute
value) at one times real-time on a SGI R10000.

2. Components of a speech recognition system

All the components of a speech recognition system can be rep-
resented byweighted finite-state transducers[2, 3], that is finite-
state networks labeled with an input symbol, an output symbol,
and a weight (typically the negative log of some probability).
The symbol� denotes the empty string, or the null symbol, its
concatenation with any input or output sequence does not mod-
ify that sequence. A path in a weighted transducer pairs the
concatenation of the input labels of its transitions with that of
the corresponding output labels, assigning the pair the sum of
the transitions weights. A weighted automaton is a weighted
transducer which has identical input and output labels for any
transition. The representation of each component by a weighted
finite-state transducer is illustrated by figures 1 (a)-(d).

Figure 1 (a) shows a three-state HMM transducer mapping se-
quences of distribution indices to context-dependent phones,
where our distributions are Gaussian mixture components. The
global HMM transducer denoted byH is obtained by taking the
closure of the union of all HMMs used in acoustic modeling.
Since our decoder directly simulates the self-loops of the HMM,
they will be omitted in the following presentation.

Figure 1 (b) depicts a simple triphonic context-dependency
transducerC mapping context-dependent phones to phones with
only two phonesd and t [12]. Each state(x; y) encodes the
most recent pair of phones read.e represents the start or end of
a phone sequence.

A sample pronunciation dictionary transducer mapping phone-
mic transcriptions to word sequences is shown on figure 1 (c).

Figure 1 (d) is a weighted automaton representing a toy language
model. Anyn-gram language model can be represented in a
similar way.

Weighted transducers map input sequences to output sequences
with some weights. They can be composed just as other map-
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Figure 1: Weighted finite-state transducer representation of the
components of a speech recognizer.

pings to create more complex mappings. In our case, the com-
position of the components:

H � C � L �G

gives a mapping from sequences of distribution names to word
sequences. Figure 2 illustrates that recognition cascade. There
exists a natural and efficient composition algorithm for combin-
ing weighted transducers [2, 7]. The algorithm also admits a
natural on-the-fly implementation.

In previous work, we demonstrated thatC � L � G can be pre-
constructed efficiently [9]. We showed that with that construc-
tion, the resulting network contains only about twice as many
arcs as the corresponding language model in the NAB task. The
next section describes a method for pre-constructing and opti-
mizingH �C � L � G.

3. Network construction and optimization
To construct this optimized integrated network, we use weighted
transducer determinization at each step of the composition of
each pair of networks.

The main purpose of the use of determinization is to eliminate
non-determinism in the resulting network, thereby substantially
reducing recognition time. In addition, its use at intermediate
steps of the construction helps to improve the efficiency of com-
position and to reduce the size of the networks.

It can be proved that in general, the transducerL � G mapping
phone sequences to words is not determinizable. This is clear
in presence of homophones. But even in the absence of homo-
phones, the unbounded delay imposed by the transduction makes
L � G non-determinizable: in some cases, it is not possible to
determine even the first element of the word sequence corre-
sponding to a phone sequence before reaching the end of that

phone sequence [see [6] for a characterization of determinizable
weighted automata and transducers].

To make it possible to determinizeL � G, we introduce an
auxiliary phone symbol denoted#0 marking the end of the
phonemic transcription of each word. Other auxiliary sym-
bols #1 : : :#k�1 are used when necessary to distinguish ho-
mophones as in the following example:

r eh d #0 read
r eh d #1 red

At mostP auxiliaryphones, whereP is the maximum degree of
homophony, are introduced. The pronunciation dictionary trans-
ducer augmented with these auxiliary symbols is denoted by~L.
For consistency, the context-dependency transducerC must also
accept all paths containing these new symbols.

For further determinizations at the context-dependent phone
level and distribution level, each auxiliary phone must be
mapped to a distinct context-dependent phone. Thus, self-loops
are added at each state ofC mapping each auxiliary phone
to a new auxiliary context-dependentphone. The augmented
context-dependency transducer is denoted by~C.

Similarly, each auxiliary context-dependentphone must be
mapped to a new distinct distribution name.P self-loops are
added at the initial state ofH with auxiliary distribution name
input labels and auxiliary context-dependency output labels to
allow for this mapping. The modified HMM model is denoted
by ~H.

It can be shown that the use of the auxiliary symbols guarantees
the determinizability of the transducer obtained aftereach com-
position. Weighted transducer determinization is used indeed at
several steps of our construction.

To begin with, ~L is composed withG and determinized:1

det(~L � G). The benefit of this determinization is the reduc-
tion of the number of alternative transitions at each state to at
most the number of distinct phones at that state, while the origi-
nal network may have as many asV outgoing transitions at some
states whereV is the vocabulary size. For large tasks where the
vocabulary size can be more than several hundred thousand, the
advantage of this optimization is clear.

The inverse of the context-dependency transducer might not be
deterministic. 2 For example, the inverse of the transducer
shown in figure 1 (c) is not deterministic since the initial state
admits several outgoing transitions with the same input labeld

or t. To build a small and efficient integrated network, it is im-
portant to first determinize the inverse ofC. 3

~C is then composed with the resulting transducer and deter-
minized. Similarly ~H is composed with the context-dependent
network and determinized. This last determinization increases
sharing among HMM models that start with the same distribu-
tions: at each state of the resulting integrated network, there is at
most one outgoing transition labeled with any given distribution
name. This leads to a substantial reduction of the recognition
time.

1Ann-gram language modelG is often constructed as a deterministic
weighted automaton with a back-off state – in this context, the symbol
� is treated as a regular symbol for the definition of determinism. If this
does not hold,G is first determinized [6].

2The inverse of a transducer is the transducer obtained by exchanging
input and output labels of all transitions.

3Triphonic or more generallyn-phonic context-dependency models
can be built directly with a deterministic inverse [12].
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Figure 2: Recognition cascade.

As a final step, the auxiliary distribution symbols of the resulting
network are simply replaced by�’s. The corresponding operation
is denoted by��. The sequence of operations just described is
summarized by the following construction formula:

N = ��(det( ~H � det( ~C � det(~L �G))))

where parentheses indicate the order in which the operations are
performed. The resultN is an integrated recognition network
that can be constructed even in very large-vocabulary tasks and
leads to a substantial reduction of the recognition time as shown
by our experimental results. The next section presents a method
for reducing the size of the network while preserving its effi-
ciency.

4. Factoring
Our decoder has a separate represention for variable-length left-
to-right HMMs for both time and space efficiencies, which we
will call the HMM specification. However, the integrated net-
work of the previous does not take good advantage of this
since, having combined the HMMs into the recognition net-
work proper, the HMM specification consists of trivial one-state
HMMs. However, by suitablyfactoringthe integrated network,
we can again take good advantage of this feature.

A path whose states other than the origin and the destination
have no more than one outgoing or incoming transition is called
a linear path. The integrated recognition network just described
may contain many linear paths after the composition with~H, and
after determinization. The set of all linear paths ofN is denoted
by Lin(N).

Input labels ofN name one-state HMMs. We can replace the in-
put of each linear path ofN of lengthn by a single label naming
ann-state HMM. The same label is used for linear paths having
the same input. The result of that replacement is a more compact
transducer denoted byF . The factoring operation onN leads to
the following de-composition:

N = H
0
� F

whereH 0 is a transducer mapping variable-length left-to-right
HMM names ton-state HMMs. SinceH 0 can be separately rep-
resented via the decoder’s HMM specification, the actual recog-
nition network is reduced toF .

Linear paths inputs are in fact replaced by a single label only
when this helps reducing the size of the network. This can be
measured by defining thegain of the replacement of an input
sequence� of a linear path by:

G(�) =
X

�2Lin(N);i[�]=�

j�j � jo[�]j � 1

wherej�j denotes the length of the sequence�, i[�] the input
label ando[�] the output label of a path�. The replacement of a
sequence� helps reducing the size of the network ifG(�) > 0.

Our implementation of the factoring algorithm allows one to
specify the maximum numberr of replacements done (ther se-
quences with the highest gain are replaced), as well as the maxi-
mum length of the linear chains considered.

Factoring does not affect recognition time, however it leads to a
substantial reduction of the size of the network as will be shown
in the next section.

5. Experimental results
We used the techniques outlined in previous sections to construct
an integrated optimized recognition network for a463,331-word
vocabulary North American Business task (463,331 represents
the total number of words found in the corpus).

To measure the improvement from these techniques, we com-
pared the size of our recognition network and its recognition
performance to the one obtained using our previous construc-
tion [9]. The same acoustic, lexical, and language models were
used in these experiments:

� The acoustic model was 5,520 distinct HMM states, each
associated to a four-Gaussian mixture model.

� C represented a triphonic context-dependent model with
1,523 states and 80,719 transitions.

� L was a 463,331-word pronunciation dictionary.

� G was a trigram language model with 5,285,995 transitions
built using Katz’s backoff method with frequency cutoffs
of 2 for bigrams and 4 for trigrams and shrunk with an
epsilon of10 using the method of Seymore and Rosenfeld
[13].

We used the factoring algorithm described in the previous sec-
tion to reduce the size of unfactored networkN built from these
components. Table 1 gives the size of the integrated recognition
networkN = H � C � L �G. Factoring helped reduce the size
of the network by about4 times without affecting recognition
speed or accuracy. The comparison with the context-dependent
networkC � L � G constructed with our previous method [9]
shows that our new recognition network is about2 times smaller.

Observe that the size of the new integrated factored networkF is
close to that of the language model used:F has only about30%
more transitions thanG. The HMM specificationH 0 consists
of 613,440 HMMs with an average of10:7 states per HMM. It
occupies only about20% of the memory ofF in the decoder
(due to the compact representation possible from its specialized
topology) and thus the overall memory reduction from our fac-
toring is substantial.

Table 1: Size of recognition networks in NAB463,331-word
vocabulary task.

network states transitions

C � L �G 9,732,230 13,415,569
H � C � L �G 23,553,133 27,240,013
F 3,215,515 6,902,395

Our experiments with the NAB 463,331-word vocabulary task
using a simple general-purpose one-pass Viterbi decoder show
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Figure 3: Comparison of the old method based on the construc-
tion of the networkC�L�G versus the new method based on the
deterministic construction ofH �C �L�G in the 463,331-word
vocabulary NAB task.

that the integrated recognition networkN (or F ) described in
the previous sections substantially speeds up recognition.

Figure 3 gives recognitionaccuracy as a function of recognition
time, in multiples of real time on a single processor of a Silicon
Graphics Origin 2000 for the network constructed using our old
method and for our new integrated recognition network.

With our new construction method, the real-time accuracy is
improved by more than2:2% in absolute value. The accu-
racy achieved by the new integrated network at real-time is only
reached by the old system at about1:35% times real-time.

Interestingly, we found that with our new construction, the ben-
efit of the use of trigram language models versus bigram models
was clear even at:5 times real-time.

Figure 4 shows recognition results for trigram models in com-
parison with results for bigrams for the same vocabulary size,
20,000, in the NAB task. The context-dependency model and
the acoustic model used were the same as those described above
for the 463,331-word vocabulary task. The word accuracy of the
network constructed from a trigram language model is always
significantly better than that of the bigram model in the range of
interest.

6. Conclusion
A general method for constructing efficient integrated networks
including context-dependent and HMM models was described.
The method, based on the use of weighted determinization and a
new factoring algorithm, provides recognition networks that are
practical and that can be used to build a 463,331-word vocabu-
lary single-pass speaker-independent real-time speech recogni-
tion system in the NAB task.

The integrated recognition networks constructed are signifi-
cantly more efficient, both in space and time, than the networks
constructed using our previous method [9].
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