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ABSTRACT

The goal of the work described in this paper is to develop
and evaluate procedures for automatic estimation of mod-
ulation spectrum �lters to compensate for distortions in
the modulation spectrum domain. The modulation spec-
trum (MS) is often used to describe the time sequence
of spectral parameters (TSSPs) that are derived from the
speech waveform, and is thought to be a good representa-
tion of many sources of variability in speech. These pro-
cedures will be used in the context of automatic speech
recognition (ASR) applications where there is likely to be
a signi�cant mismatch in the MS characteristics that exist
for system training and evaluation. Results are presented
describing application of the algorithm to one task involv-
ing an arti�cially introduced MS distortion and to another
task involving di�erences in speaking styles for training
and testing. It is shown in the paper that these tech-
niques are able to compensate for the e�ects of arti�cially
introduced distortions that appear in testing. It is also
shown that a small degree of compensation is obtained
for speaking style mismatch, and this result is compared
with the measured e�ects of the speaking style di�erences
in the MS domain.

1. INTRODUCTION

The time sequence of spectral vectors derived from the
speech signal can be represented by the Modulation Spec-
trum (MS) [5]. It has been proposed for use in many ap-
plications. These include characterizing multipath distor-
tions occurring in reverberant environments [2], describ-
ing the e�ects of channel distortion and spectral estima-
tion errors in ASR [5], and describing the e�ects of varying
speaking styles for ASR [5]. When used as a represen-
tation of the long{term averaged spectrum or cepstrum
parameters in ASR, the MS is de�ned as the power spec-
trum of the time sequence of the feature vectors that are
input to the recognizer. In speech recognition feature ex-
traction, MS �lters have been designed for the purpose
of selectively removing those portions of the modulation
spectrum representing noise or channel distortions, and
retaining the portion of the MS containing speech [5].
MS �lters are commonly applied to �ltering the se-

quence of cepstrum coeÆcients and also to computing the
cepstrum di�erence dynamic coeÆcients. It is important
to note that the MS �lters used for both the cepstrum
and dynamic cepstrum coeÆcients are generally obtained
empirically. As a result, it is often the case that MS �l-
ters designed to optimize performance for one task under
a given set of conditions prove to be suboptimal when ap-
plied to another task. The automatic procedure presented
here for estimating modulation spectrum �lters is an at-
tempt to improve speech recognition performance under
highly mismatched recognition / training scenarios.
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The paper is organized as follows. Section 2. describes
the modulation compensation algorithm (MCA) and dis-
cusses implementation issues relating to the algorithm.
In Section 3., the algorithm is implemented on an arti�-
cially introduced distortion applied to the test data. Fi-
nally, in Section 4., the issue of automatic compensation
for speaking rate mis{match using the MCA algorithm is
investigated.

2. MODULATION COMPENSATION
ALGORITHM

The modulation compensation algorithm (MCA) esti-
mates a set of �lter coeÆcients to maximize the likeli-
hood of the �ltered observation sequence with respect to
a given HMM model. The scenario under which the al-
gorithm is applied is illustrated by the block diagram in
Figure 1. The underlying assumption in this scenario is
that conditions that might a�ect the MS characteristics
of speech during recognition may not be present during
HMM model training. Discussion of the MCA algorithm
is presented in this section in two parts. First, it is intro-
duced as an extension of a class of techniques developed
by Chengalvarayan and Deng for simultaneous estimation
of HMM and observation sequence �lter parameters [1].
Second, the algorithm is described in detail, along with
algorithmic issues relating to the optimization criterion
and the form of the �lters that are used in the algorithm.
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Figure 1. Modulation compensation algorithm
(MCA) applied where modulation spectrum dis-
tortions may be introduced in test conditions.

In [1], a class of techniques for simultaneous estimation
of HMM and observation sequence �lter parameters was
developed. This was used only for obtaining di�erence
cepstrum parameters from the absolute cepstrum. The
components of a D dimensional dynamic cepstrum vector
Yt = y1; : : : ; yD were computed from a static vector Xt at
time t according to

Yt =

fX

k=�b

!k;i;mXt+k; 1 � t � T (1)

where the \modulation" �lter coeÆcients !k;i;m are de-
pendent on state i and Gaussian mixture component m.
Equation 1 was introduced into the model reestimation
equations for continuous Gaussian observation density
HMMs and simultaneous reestimation of the �lter coef-
�cients and the HMM model parameters was performed.
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Wellekens proposed a more constrained modulation spec-
trum �lter reestimation procedure aimed at optimizing
only the cut{o� frequency of the MS �lters [7].
Simultaneous estimation of these parameters has the

desirable e�ect of providing a closer coupling between
model estimation and feature analysis in speech recog-
nition. However, because of the coupling to model esti-
mation, it is unlikely that the spectral characteristics of
the �lter parameters estimated in this way will actually
re
ect any meaningful structure associated with the MS
of speech. The goal in this work is to estimate the MS �l-
ter parameters separate from the HMM model facilitating
the scenario depicted by the block diagram in Figure 1.
Since the model remains �xed, MS mismatch between ut-
terances used to train the model and the utterances used
for testing can be reduced. The MCA algorithm and its
mathematical properties are described in more detail be-
low.
The algorithm estimates a �lter that, when applied to

the absolute cepstrum coeÆcients, increases the likelihood
of the �ltered data, Y!, with respect to the HMM model,
�. This in theory could be accomplished by enumerating
an ensemble of MS �lters 
 and choosing the most likely
�lter in the ensemble,

~̂! = argmax
~!2


P (Y!
j~!; �) : (2)

However, in practice it is very diÆcult to specify a man-
ageable ensemble of �lters that would be suitable for rep-
resenting an arbitrary set of modulation spectrum dis-
tortions and it is not clear that a maximum likelihood
criterion would be suitable for selecting the optimum MS
�lter from this ensemble. The algorithm described here
assumes a �nite impulse response �lter, whose length must
be chosen, and estimates the parameters of this �lter us-
ing the expectation maximization (EM) algorithm. It can
be applied to �ltering the absolute cepstrum features or
to obtaining the �lter parameters used to compute the dy-
namic features from the absolute cepstrum. The following
discussion will refer speci�cally to the former case.
Given an initial HMM model, �, and an initial length

for the MS �lter, ~!, this EM based algorithm maximizes
the expected value of the log of the �ltered data likeli-
hood, P (Y!

j~!; �), with respect to ~!. The data to which
the �lter ~! is applied can be the un�ltered absolute data,
Xt, or the absolute data �ltered with an initial �lter. In
the latter case, the overall �lter that needs to be applied
to the test data so as to reduce the MS mis{match be-
tween the un�ltered training data and the test data is the
convolution of the initial �lter and the �lter optimized by
the MCA, ~!. Unless otherwise speci�ed, no initial �lter
is used and the MCA is started with un�ltered data.
The portion of the optimization equation that is depen-

dent on the �ltered data is given by
X

i;m;t


t;i;m [Yt � ~�x;i;m]
Tr �

�1

x;i;m [Yt � ~�x;i;m] ; (3)

where 
t;i;m is the a posteriori probability of occupying
Gaussian mixture componentm and state i at time t. The
quantities ~�x;i;m and ��1

x;i;m in Equation 3 are the HMM
model means and variances for the un�ltered data, Xt,
and are not reestimated as part of this procedure. For
the purposes of this development, Yt in Equation 1 can
be written in vector notation as:

Yt = (Xt�b : : :Xt+f)
Tr (!�b;i;m : : : !f;i;m))

Tr

= X
t+f

t�b ~!i;m : (4)

Note that, while Equation 4 demonstrates that it is pos-
sible to use MS �lters ~!i;m, that are HMM state and mix-
ture component dependent, this is not done here. By

substituting the expression for Yt in Equation 3 and dif-
ferentiating with respect to ~!, which does not depend on
i and m, we obtain

X

l;i;m;t


t;i;m
�
X

t+f

t�b

�Tr
�
�1

x;i;mX
t+f

t�b ~! =

X

l;i;m;t


t;i;m
�
X

t+f

t�b

�Tr
�
�1

x;i;m~�x;i;m (5)

Finally, ~! can be obtained by solving the matrix equation
given by Equation 5 which requires the model means and
variances, the a posteriori probabilities computed in the
forward{backward algorithm, and the un�ltered observa-
tions.
While the above procedure can be iterated, using the

estimated ~! obtained by solving Equation 5 as input to
a following iteration, there a number of issues that must
be dealt with. The �rst issue relates to the fact that it
is the �ltered data, as opposed to the original data, that
is input to the next iteration of the algorithm. As a re-
sult, the �lter applied to the data for a given iteration
must be the convolution of all the �lters obtained in the
preceding iterations. As has been seen, a convolution is
also necessary for the case where the MCA procedure is
started with data �ltered with an initial �lter. A second
issue relates to artifacts that arise due to lack of energy
constraints in the model estimation procedure. An em-
pirical procedure for normalizing �lter energies between
iterations is described in Section 3..

3. COMPENSATING FOR MS DOMAIN
MISMATCH

The MCA algorithm was �rst applied to a simulated dis-
tortion. The goal of this �rst application was to imple-
ment a scenario as depicted in the block diagram in Fig-
ure 1. The form of the modulation spectrum mismatch
was intended to incorporate a loose approximation to ex-
isting MS models of how speaking rate variability might
be re
ected in the modulation spectrum domain (e.g. [5]).
These models characterize the MS of speech as having a
peak at approximately four Hz with some variation in the
location of that peak possibly resulting from speaking rate
di�erences.
The modulation spectrum distortion took the form of

an FIR �lter of length 7 with a peak at 10Hz and a strong
attenuation of modulation frequencies beyond 20Hz. This
�lter was actually applied to the training utterances of the
high SNR, noise{free TI digits database [4]. So the modu-
lation spectrum shaping indicated in Figure 1 would actu-
ally be the inverse of that spectrum. The HMM model, �,
was then trained from the �ltered data using the forward{
backward algorithm. The 8623 digit strings uttered by a
population of adult speakers in the training set of the TI
digits database was used for training digit models with a
mixture of at most 16 continuous Gaussian components
per HMM state. The TI digits test set was split into a
3306 utterance development set, which was used as input
to the MCA algorithm, and a 5376 utterance test set for
evaluating ASR word accuracy.
The inputs to MCA are the model and a subset of the

un�ltered development utterances and the output is a �l-
ter that reduces the mismatch between the utterances and
the model. Figure 2 shows the modulation spectra for
the training utterances and the un�ltered development
utterances for cepstral coeÆcient c4. The �lter that was
applied to the training utterances is also shown. A sig-
ni�cant mismatch can be observed in the MS domain.
The magnitude spectrum of the MS �lter estimated us-
ing Equation 5 was found to provide a reasonably good
approximation magnitude spectrum of the �lter used on
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Figure 2. Modulation Spectra for the Training Ut-
terances and for the Un�ltered Development Ut-
terances, along with the Spectrum of the Filter
Applied to the Training Utterances

the training utterances. However, since there is no inher-
ent constraint on the cepstrum energy levels in the MCA,
signi�cant mismatch in the energy levels of the �ltered
cepstra and the original cepstra can occur. To deal with
this, the �lter coeÆcients are scaled with a dimension spe-
ci�c scale factor so that average energy of the training and
adaptation utterances are normalized to the same level.
The estimated �lter, scaled separately for each component
of the input cepstrum vector, is then applied to the test
utterances.
Table 1 displays the recognition performance after the

MS �lter determined by the MCA was applied to the test
utterances. Performance is presented as a function of
the number of development or adaptation utterances that
were used by the MCA. The algorithm was implemented
here in a supervised mode with the utterance transcrip-
tions made available to the MCA. The Table shows that
when the whole development set is used to determine the
best �lter with which to reduce the mismatch between
train and test utterances, word accuracy approaching the
matched condition can be obtained. When less data is
available (from 60 utterances through just one), perfor-
mance degrades gracefully with respect to the whole de-
velopment set and still alleviates most of the recognition
rate reduction due to the MS di�erences between training
and testing. Results are given in all cases for the �lter
output by the �rst iteration of MCA, which has length
3. Surprisingly, �lters with other lengths, resulting either
from running several iterations with a �lter length equal
to 3, or from choosing another �lter length (e.g. 5, 7 or 9)
also give good performance but short of the results when
the length is 3. A length of 3 seems to strike the right
balance between the number of degrees of freedom and a
constrained estimation.

Modulation Spectrum Adaptation %Word
Compensation Utterances Accuracy

Matched - 96.30
Mismatched - 15.04
MCA 3306 92.10
MCA 10 88.78
MCA 1 87.93

Table 1. Results for MCA with a simulated dis-
tortion

MCA seems to work well for the experiments that were

done with a simulated distortion. MCA was applied to
estimate the �lter applied to the absolute coeÆcients, no
dynamic features were used. The next section describes
an experiment where MCA was used to optimize the �lter
used to obtain the delta coeÆcients.

4. MCA AND SPEAKING RATE

In order to test MCA in a more realistic environment, a
database containing speech elicited at multiple speaking
rates was used [6]. This database, referred to as DB1,
was recorded in an anechoic room with a high quality
microphone. It includes speech from 22 female, and 24
male talkers, each of which recorded 120 sentences. Both
normal rate and fast rate utterances of each sentence was
elicited from each speaker. Fast rate speech was elicited
from each speaker by asking speakers to speak sentences
as rapidly as possible without gross mispronounciations.
For each speaking rate, cross-word triphones backed o�
to monophones were trained from the sentences from 38
speakers. The remainder were reserved for testing. Each
system had 4903 states and over 28000 Gaussians. In
recognition, each phone may be recognized via a triphone
or the corresponding monophone at any place within a
word. All 120 sentences for all the test speakers were
recognized. Figure 3 describes the experiment that was
carried out.

Modulation Spectrum
             Filter

ω

Fast Speaking Rate:
Development Utterances

λ
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Speaker Dependent
           Model
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  MODULATION
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SEQUENCE  OF
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Figure 3. MCA and speaking rate

The goal was to study how well MCA can cope with
speaking rate mismatches and up to what point these can
be represented in the modulation spectrum. The recog-
nition results for all 8 test speakers were analysed. The
utterances from a single male speaker where more dra-
matic di�erences between fast and normal rate speaking
styles were observed were selected for the experimental
study.
Since MCA might improve word accuracy by perform-

ing speaker adaptation, a speaker adapted model was
obtained. To do this, the gaussians in the normal-rate
model were clustered into 4 regression classes. On the
�rst 60 normal-rate sentences, one Maximum Likelihood
Linear Regression full matrix transformation (MLLR) was
learned for each regression class [3]. These were applied
to the means of the normal-rate normal-rate model, which
results in a speaker adapted normal-rate model.
This model was then input to the MCA along with the

�rst 60 fast sentences, regarded as development or adap-
tation sentences. The �lter output by MCA was applied
to the 60 last fast utterances. In this case, MCA was used
to optimize the �lter used to obtain the delta features (no
other dynamic features were used apart from them). An-
other di�erence with the previous experiment is that the
�lter used to obtain the delta features for the training ut-
terances was used as the initial �lter for MCA. The length



of the �lter output by each iteration was the initial model
�lter length, i.e. 5, plus 2 for each iteration. Results for
this experiment can be found in Table 2.

Test Condition %Word Acc.

Speaker Indep. Normal Rate 57.28
Speaker Adapt. (SA) Normal Rate 80.67

Baseline SA Fast Rate 61.58
\Pooled" MCA Fast Rate 61.10
\Dim. Speci�c" MCA Fast Rate 63.96

Table 2. Results for MCA with di�erent speaking
rates

Two modes for MCA were investigated. The �rst, re-
ferred to as \pooled MCA" in Table 2, estimates the MCA
�lter coeÆcients according to the procedure outlined in
Section 2. The second, termed \dimension speci�c MCA",
estimates a separate set of MS �lter coeÆcients for each
dimension of the cepstrum observation vector. This repre-
sents an extension to the MS �lter described in Equation 1
and independently estimates �lter parameters to optimize
dimension speci�c ML criterion. It is clear from Table 2
that the MCA yields only a modest improvement in WAC
over the baseline system on the fast rate for this task.
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Figure 4. Measured MS from fast and normal
speech utterances

In order to obtain some perspective for the degree to
which modulation spectrum based techniques may af-
fect performance for speaking rate mismatch, the aver-
age modulation spectrum was measured for utterances
with di�erent speaking rates. For each cepstrum com-
ponent, the magnitude of the averaged modulation spec-
trum was computed over 60 sentences for normal and fast
rate speech. Figure 4 displays the magnitude spectra for
one of the components of the acoustical vector. It is clear
from the curves that the fast rate speech has only slightly
more energy in the higher modulation frequencies than
the normal rate speech. This suggests that one might ex-
pect only small changes in performance using MS domain
techniques for this task, which supports the fairly minor
improvements that were observed here.

5. CONCLUSION

The modulation compensation algorithm was presented
as a maximum likelihood technique for estimating �lters
for the time sequence of spectral parameters in order to
reduce mismatch in the modulation spectrum. The proce-
dure was described as an extension to a class of techniques

developed in [1]. It can be applied to estimating MS �l-
ters for the absolute cepstrum coeÆcients or for obtaining
the dynamic cepstrum coeÆcients from the absolute co-
eÆcients. Two applications for the MCA were described.
The �rst application was for a task where a simulated
modulation spectrum domain distortion was introduced
during testing. It was shown that the MCA can e�ec-
tively reduce mismatch in the MS between training and
testing utterances. In a second application, the MCA was
applied to reducing mismatch attributable to di�erences
in speaking rate. The MCA was shown to have only a
small impact on performance for this task. Further work
is directed towards application of the algorithm to other
sources of variability where distortions in the modulation
spectrum are more pronounced.
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