DECORRELATED AND LIFTERED FILTER-BANK ENERGIES FOR ROBUST SPEECH RECOGNITION

K.K. Paliwal

School of Microelectronic Engineering
Griffith University
Brisbane, QLD 4111, Australia

ABSTRACT

Though Mel frequency cepstral coefficients (MFCCs) have been very successful in speech recognition, they have the following two problems: 1) They do not have any physical interpretation, and 2) Lifting of cepstral coefficients, found to be highly useful in the earlier dynamic warping-based speech recognition systems, has no effect in the recognition process when used with continuous observation Gaussian density hidden Markov models. In this paper, we propose to use the filter-bank energies (FBEs) as features. The FBEs are physically meaningful quantities and amenable for applying human auditory processing such as masking. We describe procedures to decorrelate and lifter the FBEs and show that the FBEs perform at least as good as (and sometimes even better than) the MFCCs for robust speech recognition.

INTRODUCTION

Mel frequency cepstral coefficients (MFCCs) are perhaps the most widely used features for speech recognition [1, 2, 3]. The MFCCs are computed from the speech signal using the following three steps [4]:

1. Compute the FFT power spectrum of the speech signal.
2. Apply a Mel-spaced filter-bank to the power spectrum to get N energies. (N is typically 20 to 60).
3. Compute discrete cosine transform (DCT) of log filter-bank energies to get MFCCs. (M is typically about 10.) The DCT is applied to filter-bank energies (FBEs) to mainly decorrelate and get (approximately) uncorrelated MFCCs.

Though MFCCs have been very successful in speech recognition, they have the following two problems: 1) They do not have any physical interpretation, and 2) Lifting of cepstral coefficients, found to be highly useful in the earlier dynamic warping-based speech recognition systems, has no effect in the recognition process when used with continuous observation Gaussian density hidden Markov models (HMMs).

The filter-bank energies (FBEs) have a clear physical interpretation which can be used advantageously for incorporating the properties of human speech perception system (such as masking) into the automatic speech recognition process. A question arises whether one can use the FBEs as features for speech recognition. In fact, the FBEs have been used in 50’s, 60’s and 70’s for speech recognition [5, 6, 7, 8]. However, they have been abandoned in favor of the cepstral coefficients because of the following two problems: 1) Use of 20 to 60 FBEs increases the dimensionality of feature space, and 2) The FBEs are highly correlated. The first problem can be solved by restricting the number of FBEs computed from the FFT spectrum to about 10 (i.e., by making N equal to M). The second problem can be solved by filtering the FBE sequence of a given frame so as to remove correlation among them. Another advantage of FBEs is that the phenomenon of cepstral lifting can be easily applied on FBEs, which is effective in the recognition process even with continuous observation Gaussian density HMMs.

In this paper, we investigate the use of the filter-bank energies (FBEs) as features. We describe the decorrelation and lifter of FBEs. We carry out speech recognition experiments with clean as well as noisy speech and quantify the effect of decorrelation and lifter of FBEs in terms of their speech recognition performance. A number of studies on this topic have been reported earlier by Nadem and his collaborators [9, 10, 11].

ROLE OF CEPSTRAL LIFTERING IN SPEECH RECOGNITION

In the 70’s and early 80’s, the dynamic time warping (DTW) based framework was the most popular approach for speech recognition. In this framework, the dissimilarity between the test vector x and the mean vector x representing a given class is measured in terms of the Euclidean distance measure of the form:

\[d(x; x) = (x - \bar{x})^T (x - \bar{x}), \]

\[= \sum_{i=1}^{D} (x_i - \bar{x}_i)^2, \]

where \(D \) is the dimensionality of the feature space and the superscript T denotes transpose of a vector (or matrix).

If the cepstral coefficients are used as a feature, then it has been demonstrated through a number of studies [12, 13, 14, 15, 16] that the performance of the speech recognition system can be improved significantly by lifting the cepstral coefficients. If \(x_i \) is the i-th cepstral coefficient, then the corresponding lifted cepstral coefficient is given by

\[y_i = w_i x_i, \]

where weights \(w_i, i = 1, 2, \ldots, D \), define the lifter. The distance measure in terms of the lifted cepstral coefficients is given by

\[d(y; y) = (y - \bar{y})^T (y - \bar{y}), \]
\[
\sum_{i=1}^{D} (y_i - \hat{y}_i)^2,
\]
\[
\sum_{i=1}^{D} [w_i(x_i - \hat{x}_i)]^2,
\]

Various types of lifters are proposed in the literature. Some of the important lifters are listed below.

1. **Linear lifter** [12]:
 \[
 w_i = i.
 \]

2. **Statistical lifter** [12, 13]:
 \[
 w_i = 1/\sigma_i, \tag{5}
 \]
 where \(\sigma_i\) is the standard deviation of the \(i\)-th cepstral coefficient computed from the training data.

3. **Sinusoidal lifter** [14]:
 \[
 w_i = 1 + \frac{D}{2} \sin\left(\frac{\pi i}{D}\right). \tag{6}
 \]

4. **Exponential lifter** [15]:
 \[
 w_i = s^i \exp\left(-\frac{i^2}{2\tau^2}\right), \tag{7}
 \]
 where \(s\) and \(\tau\) are constants. Their typical values are \(s = 1.5\) and \(\tau = 5\).

Note that the weights \(w_i\) in the linear and statistical lifters increase with frequency \(i\), thus giving more importance to higher cepstral coefficients in the computation of distance \(d(y; \Sigma)\) (Eq. (3)). In the sinusoidal and exponential lifters, the weights \(w_i\) initially increase with \(i\), attain a maximum and then start decreasing with an increase in \(i\). Thus, these lifters provide less weight to both lower and higher cepstral coefficients in distance computation.

In order to illustrate the importance of cepstral liftering, we provide here in Table 1 speech recognition results from our earlier study [17]. These results were obtained from a speaker-dependent isolated-word speech recognition system using the DTW-based framework. Recognition experiments were conducted on speech from 4 speakers and used an alphabet vocabulary of 20 words consisting of the 26 letters of the English alphabet (A-Z), 3 command words (stop, error and repeat) and the ten English digits (zero-nine). Ten cepstral coefficients derived through linear prediction analysis were used as recognition features. Speech recognition performance was evaluated for clean speech as well as noisy speech which was obtained by adding white Gaussian noise to clean speech. Table 1 lists speech recognition accuracy (in \%) for different signal-to-noise ratio (SNR) values. It can be observed from this table that all the four types of cepstral liftering help in recognizing clean as well as noisy speech better. However, improvement in recognition performance due to liftering is much better for noisy speech than that for clean speech. Similar improvements have been observed by other researchers [16, 15].

Table 1: Effect of cepstral liftering on the performance of a DTW-based speech recognizer.

<table>
<thead>
<tr>
<th>Type of lifter</th>
<th>SNR in dB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td>No lifter</td>
<td>94.0</td>
</tr>
<tr>
<td>Linear lifter</td>
<td>94.0</td>
</tr>
<tr>
<td>Statistical lifter</td>
<td>93.9</td>
</tr>
<tr>
<td>Sinusoidal lifter</td>
<td>94.5</td>
</tr>
<tr>
<td>Exponential lifter</td>
<td>94.3</td>
</tr>
</tbody>
</table>

Table 1: Effect of cepstral liftering on the performance of a DTW-based speech recognizer.

\[
d(x; x, \Sigma_a) = (x - \bar{x})^T \Sigma_a^{-1} (x - \bar{x}), \tag{8}
\]

where \(x\) and \(\Sigma_a\) are the mean vector and covariance matrix, respectively, representing the given class, and are obtained from the training data of the given class.

When the liftered cepstral coefficients (given by Eq. (2)) are used as recognition features, the Mahalanobis distance is given by

\[
d(y; y, \Sigma_y) = (y - \bar{y})^T \Sigma_y^{-1} (y - \bar{y}). \tag{9}
\]

Let us define a matrix

\[
W = \begin{bmatrix}
w_1 & 0 & 0 & 0 \\
0 & w_2 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & w_D
\end{bmatrix}.
\]

Then, it can be easily shown that \(y = Wx\), \(y = Wx\), and \(\Sigma_y = WW^T\Sigma_x W\). By substituting these equations in Eq. (9), we get the following equation:

\[
d(x; x, \Sigma_a) = d(y; y, \Sigma_y). \tag{10}
\]
This shows that the Mahalanobis distance remains invariant under lifting of cepstral coefficients. Thus, cepstral lifting has no effect in the recognition process when used with continuous observation Gaussian density HMMs. This is a major drawback with the cepstral coefficients. However, note that a statistical lifter (similar to Eq. (5)) is implicit in the continuous Gaussian density HMM formulation. Also, note that when discrete density HMMs with vector quantization and Euclidean distance measure are used for speech recognition, cepstral lifting offers improvements in recognition performance similar to the DTW-based framework.

DECORRELATION OF FILTER BANK ENERGIES

In this paper, our aim is to use FBEs as features for speech recognition. However, the FBEs have the problem that they are correlated. If we want to use them with continuous Gaussian density HMMs with diagonal covariance matrices, we must decorrelate them. This is done as follows:

Let the \(N \) FBEs computed for a given frame are given by the sequence \(\{ e_n \} \), \(n = 0, 1, \ldots, N - 1 \). We model the correlation among consecutive FBEs by a linear predictor (LP)

\[
P(z) = \sum_{i=1}^{p} a_i z^{-i},
\]

where \(a_i, i = 1, 2, \ldots, p \), are the LP coefficients. These can be estimated from the FBE sequence \(\{ e_n \} \) of the given frame using the covariance method of LP analysis. The decorrelated FBEs are computed by passing the sequence \(\{ e_n \} \) through the inverse filter \(A(z) = 1 - P(z) \). If we are interested in \(M \) decorrelated FBE features, then we must have \(N = M + p \).

LIFTERING OF FILTER BANK ENERGIES

As discussed earlier, the cepstral lifting is achieved by applying multiplicative weights \(\{ w_i \} \) to cepstral coefficients. Because of this, lifting of cepstral coefficients has no effect in the recognition process when used with continuous observation Gaussian density HMMs. Since the multiplicative weighting of cepstral coefficients is equivalent to convolution in spectral domain, lifting of FBEs can be used with the continuous Gaussian density HMMs with positive effect on recognition performance.

In order to lifter the FBEs, we design an \(L \)-th order finite impulse response (FIR) filter

\[
H(z) = \sum_{i=0}^{L} h_i z^{-i},
\]

from the lifter weights \(\{ w_i \} \) using the windowing method. The liftered FBEs are computed by passing the sequence \(\{ e_n \} \) through the filter \(H(z) \). If we are interested in \(M \) liftered FBE features, then we must have \(N = M + L \).

SPEECH RECOGNITION EXPERIMENTS AND RESULTS

In this paper, we investigate the use of FBEs as recognition features using a speaker independent isolated word recognition system as a test bed. For this, we use the ISO-LET spoken letter database from Oregon Graduate Institute [19]. Here, the vocabulary consists of 26 English alphabets (A-Z). From this data base, we use 90 utterances for each word from 90 talkers (45 male and 45 female) for training and 30 utterances for each word from 30 talkers (15 male and 15 female, different from training talkers) for testing. In the original data base, these utterances were digitized at 16 kHz sampling rate. We down-sample the speech utterances from this data base to 8 kHz using a lowpass filter with cutoff frequency of 3.5 kHz. The speech signal is analyzed every 10 ms with a frame width of 30 ms (with Hamming window and preemphasis), and each frame is represented in terms of \(M = 10 \) features.

The recognition system uses a multi-mixture continuous density HMM framework. We use a 5-state continuous density HMM recognizer with probabilility density functions approximated by a mixture of \(5 \) multivariate normal distributions with diagonal covariance matrices.

We investigate the decorrelated and liftered FBEs as features for recognizing noisy speech. For this, we train our continuous Gaussian density HMM-based recognizer on clean speech and test it on white noise corrupted speech at different SNRs. Table 2 lists results in terms of recognition accuracy (in \%) for the following feature sets:

- **Feature set 1**: 10 FBEs.
- **Feature set 2**: 10 decorrelated FBEs (obtained by using first order linear predictor \(P(z) = a_1 z^{-1} \), where \(a_1 \) is computed from the FBEs of a given frame).
- **Feature set 3**: 10 decorrelated FBEs (obtained by using second order linear predictor \(P(z) = a_1 z^{-1} + a_2 z^{-2} \), where \(a_1 \) and \(a_2 \) are computed from the FBEs of a given frame).
- **Feature set 4**: 10 liftered FBEs (obtained by using \(H(z) = 1 - 0.5 z^{-1} \)).
- **Feature set 5**: 10 liftered FBEs (obtained by using \(H(z) = 1 - 0.75 z^{-1} \)).
- **Feature set 6**: 10 liftered FBEs (obtained by using \(H(z) = 1 - z^{-1} \)).
- **Feature set 7**: 10 liftered FBEs (obtained by using \(H(z) = 1 - z^{-1} \)).
- **Feature set 8**: 10 decorrelated and liftered FBEs (decorrelation by \(P(z) \) from the feature set 3 and liftering from the feature set 7).

Table 2: Effect of decorrelation and liftering of FBEs on the speech recognition performance.

<table>
<thead>
<tr>
<th>Feature set</th>
<th>SNR in dB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Set 1</td>
<td>43.4</td>
</tr>
<tr>
<td>Set 2</td>
<td>44.5</td>
</tr>
<tr>
<td>Set 3</td>
<td>45.3</td>
</tr>
<tr>
<td>Set 4</td>
<td>76.0</td>
</tr>
<tr>
<td>Set 5</td>
<td>73.6</td>
</tr>
<tr>
<td>Set 6</td>
<td>79.8</td>
</tr>
<tr>
<td>Set 7</td>
<td>76.5</td>
</tr>
<tr>
<td>Set 8</td>
<td>69.3</td>
</tr>
</tbody>
</table>

We can make the following observations from this table:

- **Table 2**: Effect of decorrelation and liftering of FBEs on the speech recognition performance.
Table 3: Comparison of the MFCC and the liftered FBE features for speech recognition.

<table>
<thead>
<tr>
<th>Feature set</th>
<th>SNR in dB</th>
<th>(\infty)</th>
<th>30</th>
<th>25</th>
<th>20</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFCC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e)</td>
<td>76.4</td>
<td>74.3</td>
<td>71.4</td>
<td>66.2</td>
<td>55.5</td>
<td></td>
</tr>
<tr>
<td>(e + \Delta e)</td>
<td>86.0</td>
<td>83.6</td>
<td>81.8</td>
<td>78.6</td>
<td>71.6</td>
<td></td>
</tr>
<tr>
<td>(e + \Delta c + \Delta \Delta e)</td>
<td>89.0</td>
<td>86.5</td>
<td>85.0</td>
<td>82.2</td>
<td>76.6</td>
<td></td>
</tr>
<tr>
<td>FBE:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e)</td>
<td>76.5</td>
<td>75.4</td>
<td>72.6</td>
<td>69.1</td>
<td>62.2</td>
<td></td>
</tr>
<tr>
<td>(e + \Delta e)</td>
<td>86.6</td>
<td>85.6</td>
<td>84.2</td>
<td>81.3</td>
<td>74.7</td>
<td></td>
</tr>
<tr>
<td>(e + \Delta c + \Delta \Delta e)</td>
<td>88.9</td>
<td>87.7</td>
<td>86.5</td>
<td>83.7</td>
<td>77.3</td>
<td></td>
</tr>
</tbody>
</table>

1. Speech recognition performance improves by decorrelating FBEs using the first order predictor. However, the performance goes down when the second order predictor is used for decorrelation.

2. Lifting of FBEs always helps in improving the speech recognition performance. Lifting with the filter \(H(z) = 1 - z^{-2} \) provides the best results.

3. When both decorrelation and lifting of FBEs are used, the speech recognition performance goes down.

Thus, we have seen that when we use \(H(z) = 1 - z^{-2} \) to filter the FBE sequence \(\{e_n\} \) to get the liftered FBE features, we achieve the best results. We will use hereafter in this paper these liftered FBEs as the FBE features.

Since MFCCs are currently used by most of the researchers as recognition features, we compare the liftered FBE features with the MFCC features in terms of their recognition performance. This comparison will help us in putting the FBE features in proper perspective. Since temporal derivatives of the feature-vector sequence has been found to be greatly useful for speech recognition, we include delta and delta-delta parameters of the MFCCs and FBEs in the feature set. Results are shown in Table 3. In this table, symbol \(c \) is used to denote the MFCCs, and \(e \) the FBEs. It can be observed from this table that the liftered FBE features perform as well as (and sometimes better than) the MFCC features.

CONCLUSIONS

In this paper, we have investigated the use of FBEs as features for speech recognition. We have studied the role of decorrelation and lifting of FBEs and shown that lifting provides best advantage for speech recognition.

We have compared the liftered FBE features with the MFCC features for speech recognition and found them to be as good as (and sometimes better than) the MFCC features.

REFERENCES