MODELING THE RATE OF SPEECH BY MARKOV PROCESSES ON CURVES

Lawrence Saul and Mazin Rahim

AT&T Labs – Research, 180 Park Ave, Florham Park, NJ 07932, USA
{lsaul,mazin}@research.att.com

ABSTRACT

We propose a statistical model for automatic speech recognition that relates variations in speaking rate to nonlinear warpings of time. The model describes a discrete random variable, $s(t)$, that evolves as a function of the arc length traversed along a curve, parameterized by $x(t)$. Since arc length does not depend on the rate at which a curve is traversed, this evolution gives rise to a family of Markov processes whose predictions, $\Pr[s|\tau]$, are invariant to nonlinear warpings of time. We describe the use of such models, known as Markov processes on curves (MPCs), for automatic speech recognition, where x are acoustic feature trajectories and s are phonetic transcriptions. On two tasks—recognizing New Jersey town names and connected alpha-digits—we find that MPCs yield lower word error rates than comparably trained hidden Markov models.

1. INTRODUCTION

Variations in speaking rate present a challenge\cite{7} for automatic speech recognition (ASR). It is widely observed, for example, that fast speech is more prone to recognition errors than slow speech. A related effect, occurring at the phoneme level, is that consonants are more frequently confused than vowels. Generally speaking, consonants have short-lived, non-stationary acoustic signatures; vowels, just the opposite. Thus, at the phoneme level, we can view the increased difficulty of recognizing consonants as a consequence of locally fast speech.

In this paper, we investigate a probabilistic framework for ASR that models variations in speaking rate as arising from nonlinear warpings of time\cite{8}. Our framework is based on the observation that acoustic feature vectors trace out continuous trajectories\cite{2}. We view these trajectories as multidimensional curves whose intrinsic geometric properties (such as arc length or radius) do not depend on the rate at which they are traversed\cite{1}. We describe a probabilistic model whose predictions are based on these intrinsic geometric properties and—as such—are invariant to nonlinear warpings of time. The handling of this invariance distinguishes our methods from traditional hidden Markov models (HMMs)\cite{5}.

The probabilistic models studied in this paper are known as Markov processes on curves (MPCs). The problems of decoding and parameter estimation in these models were discussed in an earlier paper\cite{5}, while the first experimental results in ASR were reported shortly thereafter\cite{6}. In the present work, we present our current understanding of MPCs, emphasizing issues of special interest for ASR.

2. MARKOV PROCESSES ON CURVES

Speech recognizers take a continuous acoustic signal as input and return a sequence of discrete labels representing phonemes, syllables, or words as output. Typically the short-time properties of the speech signal are summarized by acoustic feature vectors. We view these acoustic feature vectors as sweeping out a multidimensional trajectory in the acoustic feature space.

The problem of speech recognition, at an abstract level, is to describe this multidimensional trajectory \{x(t) | t \in [0, \tau]\} by a sequence of discrete labels s_1, s_2, \ldots, s_n. This is done by specifying consecutive time intervals such that $s(t) = s_k$ for $t \in [t_{k-1}, t_k]$ and attaching the labels s_k to contiguous arcs along the trajectory. To formulate a probabilistic model of this process, we consider two variables—one continuous (x), one discrete (s)—that evolve jointly in time. As shown in figure 1, the vector x traces out a smooth multidimensional curve, to each point of which the variable s attaches a discrete label.

2.1. Arc length

Markov processes on curves are based on the concept of arc length. Let $g(x)$ define a $D \times D$ matrix-valued function over $x \in \mathbb{R}^D$. If $g(x)$ is everywhere non-negative definite, then we can use it as a metric to compute distances along curves. In particular, consider two nearby points separated by the infinitesimal vector dx. We define the squared distance between

![Figure 1: Two variables—one continuous (x), one discrete (s)—evolve jointly in time. The trace of s partitions the curve of x into different segments whose boundaries occur where s changes value.](image)
these two points as:
\[
d\ell^2 = dx^T g(x) \, dx.
\]
(1)

Arc length along a curve is the non-decreasing function computed by integrating these local distances. Thus, for the trajectory \(x(t) \), the arc length between the points \(x(t_1) \) and \(x(t_2) \) is given by:
\[
\ell = \int_{t_1}^{t_2} \left[\frac{d}{dt}[g(x) \, \dot{x}] \right]^{\frac{1}{2}} \, dt,
\]
(2)

where \(\dot{x} = \frac{d}{dt}[x(t)] \) denotes the time derivative of \(x \). Note that the arc length defined by eq. (2) is invariant under reparameterizations of the trajectory, \(x(t) \rightarrow x(f(t)) \), where \(f(t) \) is any smooth monotonic function of time that maps the interval \([t_1, t_2]\) into itself.

In the special case where \(g(x) \) is the identity matrix, eq. (2) reduces to the standard definition of arc length in Euclidean space. More generally, however, eq. (1) defines a non-Euclidean metric for computing arc lengths. Thus, for example, if the metric \(g(x) \) varies as a function of \(x \), then eq. (2) can assign different arc lengths to the trajectories \(x(t) \) and \(x(t) + \delta \), where \(\delta \) is a constant displacement.

2.2. States and lifelengths

We now return to the problem of segmentation, as illustrated in figure 1. We refer to the possible values of \(s \) as states. MPCs are conditional random processes that evolve the state variable \(s \) stochastically as a function of the arc length traversed along the curve of \(x \). In MPCs, the probability of remaining in a particular state decays exponentially with the cumulative arc length traversed in that state. The signature of a state is the particular way in which it computes arc length.

To formalize this idea, we associate with each state \(i \) the following quantities: (i) a feature-dependent matrix \(g_i(x) \) that can be used to compute arc lengths, as in eq. (2); (ii) a decay parameter \(\lambda_i \) that measures the probability per unit arc length that \(s \) makes a transition from state \(i \) to some other state; and (iii) a set of transition probabilities \(a_{ij} \), where \(a_{ij} \) represents the probability that—having decayed out of state \(i \)—the variable \(s \) makes a transition to state \(j \). Thus, \(a_{ij} \) defines a stochastic transition matrix with zero elements along the diagonal and rows that sum to one: \(a_{ii} = 0 \) and \(\sum_j a_{ij} = 1 \). A Markov process is defined by the set of differential equations:
\[
\frac{dp_i}{dt} = -\lambda_i p_i \left[\frac{(g_i(x) \, \dot{x})}{\sqrt{g_i(x) \, \dot{x}} \, \sqrt{g_i(x) \, \dot{x}}} \right] \frac{1}{2} + \sum_{j \neq i} \lambda_j a_{ij} \left[g_j(x) \, \dot{x} \right] \frac{1}{2},
\]
(3)

where \(p_i(t) \) denotes the (forward) probability that \(s \) is in state \(i \) at time \(t \), based on its history up to that point in time. The right hand side of eq. (3) consists of two competing terms. The first term computes the probability that \(s \) decays out of state \(i \); the second computes the probability that \(s \) decays into state \(i \). Both terms are proportional to measures of arc length, making the evolution of \(p_i \) along the curve of \(x \) invariant to nonlinear warping of time. The decay parameter, \(\lambda_i \), controls the typical amount of arc length traversed in state \(i \); it may be viewed as an inverse lifetime or—to be more precise—an inverse lifelength. The entire process is Markovian because the evolution of \(p_i \) depends only on quantities available at time \(t \).

2.3. Decoding

Given a trajectory \(x(t) \), the Markov process in eq. (3) gives rise to a conditional probability distribution over possible segmentations, \(s(t) \). Consider the segmentation in which \(s(t) \) takes the value \(s_k \) between times \(t_{k-1} \) and \(t_k \), and let
\[
\ell_{s_k} = \int_{t_{k-1}}^{t_k} \left[\frac{d}{dt}[g_{s_k}(x) \, \dot{x}] \right]^{\frac{1}{2}} \, dt
\]
(4)

denote the arc length traversed in state \(s_k \). By integrating eq. (3), one can show that the probability of remaining in state \(s_k \) decays exponentially with the arc length \(\ell_{s_k} \). Thus, the conditional probability of the overall segmentation is given by:
\[
Pr[s, \ell|x] = \prod_{k=1}^{n} \lambda_{s_k} e^{-\lambda_{s_k} \ell_{s_k}} \prod_{k=0}^{n} a_{s_k s_{k+1}},
\]
(5)

where we have used \(s_0 \) and \(s_{n+1} \) to denote the start and end states of the Markov process. The first product in eq. (5) multiplies the probabilities that each segment traverses exactly its observed arc length. The second product multiplies the probabilities for transitions between states \(s_k \) and \(s_{k+1} \). The leading factors of \(\lambda_{s_k} \) are included to normalize each state’s distribution over observed arc lengths.

For ASR, where \(s \) are phonemes and \(x \) are acoustic trajectories, the most important quantity to compute from eq. (5) is the most probable segmentation: \(s^*(x) = \arg \max_{s, \ell} \ln Pr[s, \ell|x] \). As described elsewhere[5], this maximization can be performed by discretizing the time axis and applying a dynamic programming procedure. The resulting algorithm is similar to the Viterbi procedure for maximum likelihood decoding[3].

2.4. Parameter estimation

The parameters \(\{\lambda_i, a_{ij}, g(x)\} \) in MPCs are estimated from training data to maximize the log-likelihood of target segmentations. We obtained our best results for ASR by estimating only the metric parameters, \(g_i(x) \); the others were assigned the default values \(\lambda_i = 1 \) and \(a_{ij} = 1/f_i \), where \(f_i \) is the fanout of state \(i \). The metrics \(g_i(x) \) were assumed to have the parameterized form:
\[
g_i(x) = \sigma_i^{-1} \Phi_i^T(x),
\]
(6)

where \(\sigma_i \) is a positive definite matrix with unit determinant, and \(\Phi_i(x) \) is a nonnegative scalar-valued
function of x. For the experiments reported here, the form of $\Phi_t(x)$ was fixed so that the MPCs reduced to HMMs as a special case, as described in the next section. Thus the only learning problem was to estimate the matrix parameters σ_i. This was done using the reestimation formula:

$$\sigma_i \leftarrow C \int dt \frac{\dot{x} x^T}{[\dot{x}^T \sigma_i^{-1} \dot{x}]^2} \Phi_t(x(t)), \quad (7)$$

where the integral is over all speech segments belonging to state i, and the constant C is chosen to enforce the determinant constraint $|\sigma_i| = 1$. For fixed $\Phi_t(x)$, we have shown previously that this iterative update leads to monotonic increases in the log-likelihood.

2.5. Relation to previous work

There are important differences between HMMs and MPCs. First, HMMs parameterize joint distributions of the form: $Pr(s, x) = \prod_i Pr(s_i | x_i), Pr[x_i | s_i]$. Thus, in HMMs, parameter estimation is directed at learning a synthesis model, $Pr[x | s]$, while in MPCs, it is directed at learning a segmentation model, $Pr[s, t | x]$. The direction of conditioning on x is a crucial difference. Unlike HMMs, MPCs do not attempt to learn a generative model of acoustic feature trajectories.

HMMs and MPCs also differ in how they weight the speech signal. In HMMs, each state contributes an amount to the overall log-likelihood that grows in proportion to its duration in time. In MPCs, on the other hand, each state contributes an amount that grows in proportion to its arc length. Naturally, the weighting by arc length attaches a more important role to short-lived but non-stationary phonemes, such as consonants.

In terms of previous work, our motivation for MPCs resembles that of Tishby[8], who several years ago proposed a dynamical systems approach to speech processing. Because MPCs exploit the continuity of acoustic feature trajectories, they also bear some resemblance to so-called segmental HMMs[2]. MPCs nevertheless differ from conventional HMMs in two important respects: the treatment of arc length, and the emphasis on learning a segmentation model $Pr[s, t | x]$, as opposed to a synthesis model, $Pr[x | s]$.

Finally, we note that admitting a slight generalization in the concept of arc length, we can essentially realize HMMs as a special case of MPCs. This is done by computing arc lengths along the spacetime trajectories $\dot{x}(t) = \{x(t), t\}$—that is to say, replacing eq. (1) by $dt^2 = [\dot{x}^T g(x) \dot{x}] dt^2$, where $\dot{x} = \{\dot{x}, 1\}$ and $g(x)$ is a spacetime metric. Allowing delta-time to contribute to the arc length is important for ASR since invariance to nonlinear warpings of time is not a perfect symmetry of speech. Put another way, this allows one to incorporate both movement in acoustic feature space and duration in time as measures of phonemic evolution. In this setting, one can also mimic the predictions of HMMs by setting the σ_i matrices to have only one non-zero element (namely, the diagonal element for delta-time contributions to the arc length) and by defining the functions $\Phi_t(x)$ in terms of HMM emission probabilities $Pr(x | t)$ as:

$$\Phi_t(x) = -\ln \left[\frac{Pr(x | t)}{\sum_t Pr(x | t)} \right]. \quad (8)$$

This relation is important because it allows us to initialize the parameters of an MPC by those of a continuous-density HMM. This initialization was used in all the experiments reported below.

3. EXPERIMENTS

Both HMMs and MPCs were used to build connected speech recognizers. Training and test data came from speaker-independent databases of telephone speech. All data was digitized at the caller’s local switch and transmitted in this form to the receiver. For feature extraction, input telephone signals (sampled at 8 kHz and band-limited between 100-3800 Hz) were pre-emphasized and blocked into 30ms frames with a frame shift of 10ms. Each frame was Hamming windowed, auto correlated, and processed by LPC cepstral analysis to produce a vector of 12 lifter cepstral coefficients[3]. The feature vector was then augmented by its normalized log energy value, as well as temporal derivatives of first and second order. Overall, each frame of speech was described by 39 features. These features were used differently by HMMs and MPCs, as described below.

Recognizers were evaluated on two tasks. The first task was recognizing New Jersey town names (e.g., Newark). The training data for this task consisted of 12100 short phrases, spoken in the seven major dialects of American English. These phrases, ranging from two to four words in length, were selected to provide maximum phonetic coverage. The test data consisted of 2426 isolated utterances of 1219 New Jersey town names and was collected from nearly 100 speakers. Note that the training and test data for this task have non-overlapping vocabularies.

Baseline recognizers were built using 43 left-to-right continuous-density HMMs, each corresponding to a context-independent English phone. Phones were modeled by three-state HMMs, with the exception of background noise, which was modeled by a single state. State emission probabilities were computed by mixtures of Gaussians with diagonal covariance matrices. Different sized models were trained using $M = 2, 4, 8, 16, 32$, and 64 mixture components per hidden state; for a particular model, the number of mixture components was the same across all states. Parameter estimation was handled by a Viterbi implementation of the Baum-Welch algorithm.

MPC recognizers were built using the same overall grammar. Each hidden state in the MPCs was assigned a metric $g_i(x) = \sigma_i^{-1} \Phi_i(x)$. The functions...
Another important issue for MPCs is learning—namely, how to parameterize and estimate the metrics $\Phi_i(x)$ from sampled trajectories $x(t)$. We note that the learning problem in MPCs has many more degrees of freedom than the corresponding one in HMMs. In particular, whereas in HMMs one must learn an emission density $P(x|i)$ for each hidden state, in MPCs one must learn a metric $g_i(x)$. The emission density $P(x|i)$ is a scalar-valued function over the acoustic feature space, while the metric is a matrix-valued function over this space. It is fair to say that we do not understand the problem of estimating metrics nearly as well as the problem of estimating probability distributions (e.g., mixtures of Gaussians).

Finally, we emphasize that the issues of feature selection and parameter estimation in MPCs are not independent. The cepstral front end, so popular in ASR today, is extremely well matched to the HMM back end; indeed, one might argue that over the last decade of research, each has been systematically honed to compensate for the other’s failings. It seems likely that future progress in ASR will require concerted effort at both ends. Thus we hope that besides providing an alternative to HMMs, MPCs also encourage a fresh look at the signal processing performed by the front end.

5. REFERENCES

Table 1: Word error rates (WERs) for HMMs and MPCs on the task of recognizing NJ town names.

<table>
<thead>
<tr>
<th># mix</th>
<th>HMM-WER (%)</th>
<th>MPC-WER (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>22.3</td>
<td>20.9</td>
</tr>
<tr>
<td>4</td>
<td>18.9</td>
<td>17.5</td>
</tr>
<tr>
<td>8</td>
<td>16.5</td>
<td>15.1</td>
</tr>
<tr>
<td>16</td>
<td>14.6</td>
<td>13.3</td>
</tr>
<tr>
<td>32</td>
<td>13.5</td>
<td>12.3</td>
</tr>
<tr>
<td>64</td>
<td>11.7</td>
<td>11.4</td>
</tr>
</tbody>
</table>

Table 2: Word error rates (WERs) for HMMs and MPCs on the task of recognizing connected alpha-digits.

<table>
<thead>
<tr>
<th># mix</th>
<th>HMM-WER (%)</th>
<th>MPC-WER (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>12.5</td>
<td>10.9</td>
</tr>
<tr>
<td>4</td>
<td>10.7</td>
<td>8.8</td>
</tr>
<tr>
<td>8</td>
<td>10.0</td>
<td>8.2</td>
</tr>
</tbody>
</table>

The second task in our experiments involved the recognition of connected alpha-digits (e.g., N Z 3 V J 4 E 3 U 2). The training and test data consisted of 14622 and 7255 utterances, respectively. Recognizers were built from 285 sub-word HMMs/MPCs, each corresponding to a context-dependent English phone. The recognizers were trained and evaluated in the same way as the previous task. Results are shown in table 2.

4. CONCLUSION

While these results demonstrate the viability of MPCs, several issues require further attention. One important issue is the problem of feature selection—namely, how to extract meaningful trajectories from the speech signal. In this work, we used the same cepstral features for both MPCs and HMMs; this was done to facilitate a side-by-side comparison. It is doubtful, however, that cepstral trajectories (which are not particularly smooth) provide the most meaningful type of input to MPCs. Intuitively, one suspects that pitch contours or formant trajectories would provide smoother, more informative trajectories than cepstra; unfortunately, these types of features are difficult to track in noisy or unvoiced speech. Further work in this area is needed.

Another important issue for MPCs is learning—namely, how to parameterize and estimate the metrics $g_i(x)$ from sampled trajectories $x(t)$. We note that the learning problem in MPCs has many more degrees of freedom than the corresponding one in HMMs. In