Prominence correlates. A study of Swedish

Gunnar, Fant, Anita Kruckenberg, Johan Liljencrants and Antonis Botinis

1 Department of Speech, Music and Hearing, KTH, Sweden
2 Department of Languages, University of Skövde, Sweden

Abstract
This is a summary of studies of word and syllable prominence in Swedish performed during several years. A unique feature is the correlation of observed acoustic data with a continuously scaled parameter of perceived prominence. Besides the established parameters of duration, F0, intensity, and spectral tilt we have also data on true subglottal pressure. Studies of co-variation within the set of acoustic parameters reveal some interesting relations, some of which can be related to the production mechanism. The major part of the material derives from prose reading, but we have also data from contrasting “lab type” sentences. Some systematic differences appear. Our findings have applications in the development of text-to-speech rules.

1. Introduction

1.1 The prominence parameter
Our technique for prominence rating has been described in [1, 2, 3, 4]. A crew of 15 listeners was engaged in the assessment of each syllable or word from a recording, presented in repeated chunks of the order of a sentence. A scale, Rs, from 0 to 30 was established. It was found that lexically unstressed syllables averaged Rs=11 and stressed syllables Rs=19. Word prominence assessments closely followed those of syllables carrying maximum stress in isolated lexical pronunciation. Nouns and numerals received an average score of 20, adjectives 18, verbs and adverbs 17. All function words received scores lower than 13. These values were obtained for a single speaker, SH, whose recording included true subglottal pressure sensed through a tracheal puncturing probe and mouth pressure through a nasal probe [5].

In connection with our more recent studies of intonation [6, 7] we used the same text, a paragraph of one minute’s length, corpus 1, but now read by five speakers, three males and two females. Rs determinations were limited to accented words and were performed by two expert judges only. We noted on the average about one Rs unit higher values of content words than in the earlier single subject reading. F0 predictions derived from this material have been tested on a second paragraph of the same length, corpus 2, which have been reported in [7].

It is the purpose of the present article to review our earlier work and to report on more recent studies on focal accentuation and parameter interrelation.

2. Studies of prose reading

2.1 Duration
Over the years a considerable amount of work has been devoted to duration in Swedish prose reading [3, 8]. A major finding is the systematic growth of syllable duration with the degree of prominence and the number of phonemes in the syllable. For non-terminal locations we found a difference close to 100 ms comparing average values of stressed and unstressed syllables of the same number of phonemes, e.g. 2, 3, 4 or 5. This is demonstrated in Figure 1.

Figure 1. Syllable duration.

The data for the two male subjects involved, ÅJ and SH, originate from two different studies. An additional finding is that increasing distinctiveness increases the duration of stressed syllables relatively more than unstressed syllables. Cross language studies, also involving French and English have been performed [9, 10].

More detailed data have been collected in a databank of phoneme and syllable duration within a phonological search frame. It has allowed a high degree of predictability of duration from text [8]. A prediction in the reverse direction, from duration to Rs, is illustrated in Figure 2. Here we have compared assessed Rs values in our recent corpus 2 and Rs values predicted from observed syllable duration. These are the mean of the five subjects reading. The prediction was carried out by an interpolation with respect to two data bank reference values, representing stressed condition, Rs=19, and unstressed condition, Rs=11. These references were derived from a simplified look up procedure taking into account...
the number of phonemes in the syllable and how many of these were unvoiced. Considering that the database was derived from a speaker not contained in the group, and that the Rs assessments were made by two subjects only, the overall fit is quite good. Similar results can be achieved by predicting Rs from the F0 contour which requires a more complex modelling [6, 7]. An additional feature apparent from Figure 2 is the close similarity between the F0 contour and the SPL contour which show the same declination.

2.1 Intensity parameters

Intensity is usually measured as sound pressure level, SPL, in dB. We have introduced an additional parameter, SPLH, which differs from the SPL by the introduction of our standard pre-emphasis.

\[G(f) = 10 \log_{10}\left\{\frac{1+f^2/200^2}{1+f^2/5000^2}\right\} \text{ dB} \] (1)

It has a gain of 3 dB at 200 Hz, 14 dB at 1000 Hz and 25 dB at 5000 Hz. SPLH is more sensitive to variations in the region of the second and the third formants, F2 and F3, than is SPL, and could accordingly match the concept of sonority. Moreover, the difference, SPLH-SPL, is a measure of the relative weight of formants in a region above F0 and F1. SPLH-SPL is in part related to the source and in part to the filter function, i.e. the formant pattern. At constant articulation, variations in the SPLH-SPL measure accordingly brings out variations in the high frequency contents of the voice source, which in turn is related to the concept of spectral tilt [11].

A source parameter closely associated with SPL is the Ee parameter, the negative amplitude of the differentiated glottal flow at the closing point of the glottal cycle [12]. All formant amplitudes are proportional to Ee but are also determined by the pattern of formant frequencies. In the lower part of a speaker’s available F0 range, and taking into account the covarying increase of subglottal pressure, the Ee parameter increases in proportion to F02 [12, 13]. The second power relation implies that one semitone increase in F0 is associated with 1 dB increase in Ee and thus in SPL, which is the tendency observed in Figure 2.

2.2 Rs correlates

Results from linear regression analysis relating Rs to acoustical parameters have been reported in [3, 4, 13]. They pertain to the prose reading of subject SH. In order to minimise the influence of context the sampling was limited to [a] vowels in an early position of a sentence. Two examples are shown in Figure 3. One is a graph of Rs versus SPLH-SPL which attained a correlation coefficient of $R^2=0.87$. The other is a prediction of Rs from the joint data of duration (DUR) and (SPLH-SPL) where we noted $R^2=0.90$. These happened to be the best predictors. Next in order came SPLH with $R^2=0.82$, DUR with $R^2=0.80$, SPL with $R^2=0.76$, Ee with $R^2=0.60$ and F0 with $R^2=0.45$. The low F0 score does not reflect a true importance since the sampling represented raw data outside a proper intonation modelling frame. The clustering of the data points in two regions centered at Rs values of 23 and 12, reflects alternations between stressed and unstressed syllables originating from content words and function words in this particular context. They are somewhat higher than our mean values for the entire subject SH corpus, Rs=19 respectively Rs=11.

We may summarise average trends as follows. An increase of prominence from Rs=11 to Rs=19 is associated with 4 dB in SPL, 6 dB in SPLH, 2 dB in SPLH-SPL, 1cm H$_2$O in Psup and 60 ms in DUR. These values are in part based on the [a] data above, but are fairly representative for other vowels, though possibly somewhat lower in less open vowels. It should be kept in mind that the vowel specific, inherent, values of SPLH-SPL are highly influenced by the formant pattern. They vary between 4-15 dB, the lowest for [u:] the highest for none-close front vowels. The step in syllable duration in this Rs interval is close to 100 ms.
3. Accentuation and focus

The linear increase of acoustic parameters with Rs is valid up to a limit of the order of Rs =22-25. At higher Rs levels we encounter non-linear effects, usually saturation, which have to be taken into account. This is especially apparent for duration which does not increase much above Rs=25 whereas F0 and intensity parameters gain dominance. A specific feature is that the H*L fall of F0 in the major syllable of an accent 2 word tends to saturate above Rs=22 whilst the F0 peak in the secondary syllable carrying sentence accent gains a dominance [6, 7].

With these limitations in mind we may refer to the following set of parameter increase from Rs=15, the lowest limit of accentuation to Rs=25, a prominent focal accentuation. In this range F0 increases by 4-8 semitones. The co-varying increase in SPL is of the order of 6 dB, in SPLH 9 dB, and in SPLH-SPL 3 dB. These values were largely obtained from systematic shifts of the location of focus within a short sentences [3, 4].

Our most recent study [4] provides illustrations of spectrograms in synchrony with F0, subglottal pressure, F0, SPL and SPLH of sentences contrasting in accent type and in neutral versus focal prominence of a test word. These were "Maria Lénar igen, Maria Lénar igen, Maria Lenár igen, Maria "Lenár igen, Maria lenár igen, Maria lénar igen. Sampled data from these appear in Figure 4.

The temporal pattern is almost the same in the neutral and in the focal version. In the two accent 1 versions, lénar and lenár, the focal reinforcement raises the level of the F0 peak in the accented syllable by 8 and 7 semitones respectively.

In the accent 2 version, as expected, it is the secondary syllable which carries the focal prominence. It is raised by 6 semitones. Similar relations appear with respect to SPL, with the exception that the primary syllable of accent 2 is also affected. The raise of the SPLH-SPL parameter in the three versions is of the order of 3-5 dB, which is about 50% of the raise in SPL, confirming earlier findings [3].

Another study that we have initiated pertains to lab sentences with a test word of structure [s+V+s+a] where the vowel V can be long or short carrying accent 2 or it can be unaccented with stress shifted to the [a] vowel. Five subjects were
engaged. A general impression from a preliminary analysis, see Figure 5, is the primary role of F0 as a focal determinant and the less influence of duration. Also, subjects differed much with respect the relative weight given the various parameters. Thus one of the subjects read the whole sentence louder when in focus but retained prominent SPL contrasts. Another subject made little use of SPL but maintained prominent F0 contours including a pre-focal reduction of F0 thus enhancing a transitional contrast.

Figure 5. Test sentence “Klubben sVsa spelar bra musik” Average data with V= [i e a o u]. The three groups pertain to sV:s:a, sV’:sa, sV’:sa. Number one and three have accent 2 and the second accent 1 with stress on the [a]. The F0 data refer to three successive sample points, the [e], the vowel V and the [a].

4. Conclusions

The traditional and straightforward method of studying how various acoustic parameters signal prominence is through systematic variations of lab sentences. Although results may be considered to be of some relevance for connected speech there remains an influence of the sentence frame and comparisons of words within a sentence. In this respect duration is the most robust correlate, whereas the importance of F0 and intensity measures vary with respect to position and prosodic grouping. They are subject to the same declination with 1 semitone in F0 corresponding to 1 dB in SPL. However, with increasing degree of focal emphasis duration tends to saturate and F0 and intensity parameters take over. We have found surprisingly large individual variations in the relative role of various parameters contributing to a focal/non-focal contrast in simplified lab sentences.

Our SPLH-SPL parameter has promising qualities as a supplement to SPL. In contrastive comparisons, differences in SPLH-SPL bring out the relative high frequency boost originating from the voice source and a more open articulation, which conditions a more sonorous formant pattern. However, the situation is reversed in the maximally close phase of long Swedish vowels [iː][yː][uː] and [vː] which tend to approach a closed target when highly stressed.

5. References