Automatic Speech Recognition with Sparse Training Data for Dysarthric Speakers

Phil Green*, James Carmichael*, Athanassios Hatzis*, Pam Enderby*, Mark Hawley*+, Mark Parker*+

*University of Sheffield, United Kingdom
+Barnsley District General Hospital NHS Trust, Barnsley, United Kingdom

Abstract

We describe an unusual ASR application: recognition of command words from severely dysarthric speakers, who have poor control of their articulators. The goal is to allow these clients to control assistive technology by voice. While this is a small vocabulary, speaker-dependent, isolated-word application, the speech material is more variable than normal, and only a small amount of data is available for training. After training a CDHMM recogniser, it is necessary to predict its likely performance without using an independent test set, so that confusable words can be replaced by alternatives. We present a battery of measures of consistency and confusability, based on forced-alignment, which can be used to predict recogniser performance. We show how these measures perform, and how they are presented to the clinicians who are the users of the system.

1. Introduction

The work reported here is part of the STARDUST1 project which aims to provide severely dysarthric speakers with voice access to assistive technology. Dysarthrias are a family of neurologically-based speech disorders characterized by loss of control of the articulators [Enderby and Emerson 95]. Speech produced by dysarthric speakers can be very difficult for listeners unfamiliar with the speaker to understand. Since disease or trauma to the motor neurones often affects the physical processes responsible for speech production, dysarthric symptoms often accompany neurological conditions such as cerebral palsy, head injury and multiple sclerosis. Thus many people with dysarthria are often physically incapacitated to the extent that spoken commands become an attractive alternative to normal keyboard-and-mouse input, despite the difficulty of achieving robust Automatic Speech Recognition (ASR) for dysarthric material.

There have been a number of studies concerning the feasibility of ASR for dysarthric speech [e.g. Blaney & Wilson 00, Bowes 99, Deller et al. 91, Doyle et al. 97, Ferrier et al. 95, Kotler et al 97, Rosengren et al. 95, Thomas-Stonell et al. 98] which are reviewed in [Rosen et al. 00, Hawley 02]. Unsurprisingly, these studies report rather varied performance: there is a general consensus that ASR can be viable for mild to moderate dysarthria, using commercially available ‘dictation’ systems. However, more severe conditions defeat these systems except for a few individuals. For severely dysarthric speech, recognisers trained on a normal speech corpus cannot be expected to work well. Although some systems embody algorithms which adapt their statistical models to the

1 Speech Training and Recognition for Dysarthric Users of Speech Technology.
Whole-word rather than phone-level models,
Typically 11 HMM states,
Typically 3 mixture Gaussian distributions per state,
‘Straight-through’ model topology allowing only self-transitions and transitions to the next state,
Acoustic vectors consisting of Mel Frequency Cepstral Coefficients, typically with differences but without overall energy (dysarthric speakers often have difficulty maintaining a steady volume).
Training data labelled at the word level
Sampling rate for audio data of 16KHz, with a 10ms frame rate.

Baseline results for normal and dysarthric speakers on 10-word vocabularies are encouraging. The table below gives word accuracy on previously unseen test data after training on 20 examples of each of 10 words by the same speaker\(^1\). All material was recorded before the dysarthric speakers had received any speech consistency training:

<table>
<thead>
<tr>
<th>Speaker</th>
<th>Recogniser Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP (Normal)</td>
<td>100</td>
</tr>
<tr>
<td>AH (Normal)</td>
<td>100</td>
</tr>
<tr>
<td>GR (Severely Dysarthric)</td>
<td>87</td>
</tr>
<tr>
<td>JT (Severely Dysarthric)</td>
<td>100</td>
</tr>
<tr>
<td>CC (Severely Dysarthric)</td>
<td>96</td>
</tr>
</tbody>
</table>

Table 1: Accuracy Rates for Isolated-Word Speaker-Dependent Recognisers

This small quantity of training data presents unusual problems: normally a corpus is available which is sufficiently large to be split into training and test sets, with performance measured on the test set dropping only slightly compared to performance on the training set. Here, in contrast:

- It is unlikely that good results on a small training set will hold up under everyday conditions.
- To produce the best-performing recogniser one should use all, or nearly all, the available data for training rather than reserving some for evaluation.
- Predictions of recogniser performance cannot be based on an analysis of test-set confusion matrices.

In addition, the intended users of STARDUST software are clinicians\(^2\) rather than speech technologists. These clinicians must configure and train speaker-dependent recognisers, not merely use them. STARDUST therefore provides Graphical User Interface (GUI) tools to facilitate the collection, selection, and labelling of data along with the actual building of the recognisers themselves. Once such a recogniser has been constructed, our clinicians can identify outlier utterances for removal from the training set.

3. Recognition Evaluation Measures

3.1. Consistency Measures

In STARDUST it is possible to modify a client’s recognition vocabulary. This is important because it is usual for a dysarthric speaker to produce some words with less articulatory variability than others (‘TV’, for example might be an easier proposition than ‘television’). While clinical assessment can help in identifying such words, a quantitative measure of word-level consistency is needed: HMM-based recognisers do not decode speech in the same manner that human listeners do and their results are sometimes counter-intuitive. Similarly, it would be useful to measure the overall consistency of the speech in the training corpus, across all chosen words. Overall consistency could be used to assess the severity of the disorder and to chart the client’s progress as therapy proceeds. At a finer level, it is useful to track utterance-level consistency: the correlation between the probability scores returned by a client’s individual productions of a given word and the norm for that word. With this measure the clinician can identify outlier utterances for removal from the training set.

3.2. Predicting Confusions: Confusability Measures

In addition to consistency measures, robust recognition performance could be facilitated if some means of predicting recognition errors could be devised, the aim being to identify words which can be expected to be easily confused with each other. Conventionally, test-set confusion matrices are used for this purpose, but these are unlikely to be very informative over sparse data, and in any case it is advisable to use all the data (except outliers) for training purposes. An alternative is to devise a measure of word-level confusability. Previous work on word confusability measures has been reported in [Roe and Riley 94, Tan et al, 99], but both these studies rely on making use of the normal phonetic structure of a word, which is inappropriate for disordered speech.

3.3. Formulating Consistency and Confusability Measures

An alternative to phonetically-based metrics is to define probability-based measures based on forced alignment against trained models, based exclusively on the training set and the models. The following scheme uses forced-alignment of training set utterances against the models.

- We have a training set for a vocabulary of \(N \) words, \(W_1, \ldots, W_N \).
- We have trained a CDHMM \(M_i \) for each word \(W_i \).
- \(w_{jk} \) is the \(k \)-th repetition of the \(j \)-th word in the training set

By forced alignment, we can compute the per-frame log likelihood \(L_{ijk} \) of each model generating each example of each word on the Viterbi path. The consistency \(\delta_i \) of word \(W_i \) is obtained by

\[
\delta_i = \frac{\sum_j L_{ijk}}{n_i},
\]

where \(n_i \) is the number of examples of \(W_i \) in the training set: we average the scores obtained by aligning all the examples of a word against the model for that word. The reasoning behind this is that the more variability there is in the training data for each speech unit, the larger the variances in that unit’s HMM state distributions will be. The forced-alignment likelihoods will be lower for an inconsistently spoken word than for a consistent one since its distributions will be flatter.

The overall consistency of the training corpus, \(A \), is just the average of the \(\delta_i \):

\[
A = \frac{\sum_i \delta_i}{N}.
\]

The confusability between \(W_i \) and \(W_j \) is defined by

\[
C_{ij} = \frac{\sum_k L_{ijk}}{n_i n_j}.
\]

\(C_{ij} \) is the average score obtained by aligning examples of \(W_j \) against \(M_i \). The higher this is, the greater the likelihood that \(W_j \) will be misrecognised as \(W_i \).
3.4. Confusability Matrices

The confusability measures \(C_{ij} \) between pairs of words can be viewed conveniently as a **confusability matrix**. To make interpretation easy, \(C_{ij} \) is used to code the greyscale shading or colour hue of each cell (a grey scale is used here for printing purposes but a colorized matrix is also included for reference). The examples below use the following scale which may represent either a standard or relative range of values.

![Table 2: Confusability Colur Map](image)

Table 3 shows a confusability matrix for a recogniser trained for normal speaker MP. Table 4 is the corresponding matrix for our most severely dysarthric subject, GR. The recognisers have the same vocabulary. The diagonal of the confusability matrix corresponds to the word-level consistency measures. For a recogniser expected to perform well, cells on the diagonal of the confusability matrix (that is, the word aligned with itself) should be towards the blue end of the scale and off-diagonal (the word aligned with other models) cells should be towards the yellow end. This is the case the normal speaker MP (Table 3). For a dysarthric speaker, the blue-yellow distinction will not be so pronounced, as is apparent for GR in Table 4.

3.5. Experiments with the Evaluation Measures

![Figure 1: Consistency of Mixed Data Sets](image)

The behaviour of the overall consistency measure \(\Delta \) can be verified by constructing recognisers for mixtures of speech material from normal and dysarthric speakers. For the same 10-word vocabulary, corpora consisting of 20 examples of each word were constructed by mixing normal utterances (speaker MP) with utterances from each of two dysarthric speakers (GR and JT), in varying proportions. Overall consistency measures for these corpora are shown in Figure 1. The leftmost points are for all-normal speech and the rightmost points are all-dysarthric speech. In between, the proportion of dysarthric speech is increased by 10% at each step. Consistency worsens as more dysarthric speech is introduced, until the dysarthric speech begins to dominate the corpus, at which stage consistency then recovers, but not to the level of the normal speech. GR’s condition is more severe – i.e. demonstrates fewer phonetic tokens – than that of JT, so when his speech is mixed with normal speech in increasing proportions, consistency deteriorates more acutely and recovers less than for JT. Note that since consistency measures and confusability measures are averages over log-likelihoods, they are negative numbers representing small quantities, and a difference of \(x \) between two such measures should be thought of as \(x \) orders of magnitude.

![Table 3: Confusability Matrix (Standard Calibration) for Normal Speaker MP](image)

Table 5 provides informal confirmation that confusability is a good predictor of confusions. Here, the confusions on a test set (20 utterances per word) are superimposed on the GR confusability matrix of Table 4.
3.6. Using the Evaluation Measures

When a new recogniser has been built, the STARDUST software automatically generates an html-formatted report providing, among other statistical data, the recogniser’s confusability matrix and utterance-level consistency tables. As an example of how the report is used, we notice that in Table 5, ‘Alarm’ and ‘Lamp’ show clear evidence of confusability with each other (but less so with other words) and therefore one or the other should be removed. ‘Volume’ returns high confusability scores for nearly all the words in the vocabulary, indicating that it should be replaced.

4. Relationship to the Assessment of Speech Disorders

The assessment of speech disorders can contribute substantial knowledge to assist in the diagnosis of the underlying neurological problems. Assessment is also conducted to assist in monitoring the effectiveness of speech and language therapy. One important component of such an assessment is an analysis of intelligibility. Intelligibility assessments are normally based on listening tests and are notoriously complex and time consuming to conduct and psychometrically weak, having poor reliability and validity. The confusability and consistency measures defined above provide complimentary (and to some extent an alternative) metrics based only on statistics of the speech acoustics. These objective measures can be obtained rapidly and have the psychometric properties of being reliable and repeatable. They can be used within clinical sessions and the results can be analysed in more or less detail, as is required. Speech consistency is not the same as speech intelligibility but may be expected to be related to it, a topic offering much scope for future studies. The relationship between intelligibility and consistency has not been reviewed elsewhere and remains a piece of work that this team will pursue.

Acknowledgements

STARDUST is funded by the UK NHS New and Emerging Application of Technology (NEAT) programme. The views expressed in this publication are those of the authors and do not necessarily reflect those of the Department of Health. Related work is supported by the EC framework 5 project OLP.

References