DISCRIMINATIVE TRAINING AND MAXIMUM LIKELIHOOD DETECTOR FOR SPEAKER IDENTIFICATION

M. Mihoubi, G. Boulianne, P. Dumouchel

Centre de recherche informatique de Montréal (CRIM)
{mmihoubi, gboulian, pdumouchel}@crim.ca

ABSTRACT
This article describes a new approach for cues discrimination between speakers addressed to a speaker identification task. To this end, we make use of elements of decision theory. We propose to decompose the conventional feature space (MFCCs) into two subspaces which carry information about discriminative and confusable sections of the speech signal. The method is based on the idea that, instead of adapting the speakers models to a new test environment, we require the test utterance to fit the speakers models environment. Discriminative sections of training speech are used to estimate the probability density function (pdf) of a discriminative world model (DM), and confusable sections to estimate the probability density function of a confusion world model (CM). The two models are then used as a maximum likelihood detector (filter) at the input of the recogniser. The method was experimented on highly mismatched telephone speech and achieves a considerable improvement (averaging 16 % gain in performance) over the baseline GMM system.

1. INTRODUCTION

Recall that principal motivation for using a Gaussian mixture model (GMM) for text-independent speaker identification is the notion that each component density may model some underlying set of acoustic classes such as vowels, nasals, or fricatives [?]. But it is well known that not all acoustic classes have the same capacity to discriminate between speakers. The confusable classes are not the only problem affecting the performance of speaker recognition systems. Generally, the characteristics of the training and the testing environment are different, and if the test data comes from an environment not matched by the SI GMM model, the recogniser will fail to identify the claimed speaker. Thus feature extraction of a good set of acoustic parameters is the key to guarantee high accuracy recognition. For this purpose, feature selection and feature extraction methods are widely used. For example, linear discriminant analysis (LDA), with long-term parameters, was applied successfully to a speaker identification problem [?]. A variant of LDA, termed confusion discriminative analysis (CDA), was applied to a speech recognition task on a state-based feature space selection with hidden Markov models (HMM) [?, ?, ?]. The difference between LDA and CDA is that CDA attempts to identify specific confusion data for each state while LDA attempts to do that on a global basis.

Feature extraction with CDA [?] uses two approaches: a Viterbi based recogniser to generate multiple sentence hypotheses and a frame by frame Viterbi recogniser. For the first approach, the decision is made based on a comparison of likelihoods between the current hypothesis and correct transcription alignment, and for the second approach on rank orders within an N-Best framework. A multiple sentence hypotheses generation is used to ensure that confusable sections will be gathered. In both cases, the experiments have been performed using different thresholds to capture a sufficient amount of confusion data.

Two major problems can be identified in this approach. First the recognition on training data produces generally a small fraction of confusable frames which are not sufficient to robustly estimate the confusion distributions. Second, attempting to obtain more confusion data by using thresholds have led to a quiet poor classification. Also, these discriminative training schemes were applied to speech recognition task based on HMM, and thus cannot be used for comparison with our approach.

In our method, the confusable sections of speech are trimmed from a subset of the training data not used in the estimation of the model parameters. This avoids the use of free parameters (thresholds) and guarantees a sufficient amount of confusion data to train (or adapt) the confusion distributions. Furthermore, our approach attempts to search for the confusable sections between the different speakers instead of the confusable sections belonging to the same speaker as in the cited works. It should be noted that performing recognition on a frame by frame basis or on a short-term basis leads to a very expensive computation. Moreover a short-term of speech segment (e.g., about 10 ms) cannot capture the essential information about the speaker [?]. To overcome these problems, we have concatenated several short-term analysis vectors into a longer one leading to a large sample classification rule. This approach enables us to use
a model with multiple mixture components in the gathering process.

2. DISCRIMINATIVE AND CONFUSION MODELS

As we mentioned in the introduction, our aim is to divide the space of training observations, for each speaker, into two mutually exclusive regions \(R_1 \) and \(R_2 \). The region \(R_1 \) will contain all the sequences coming from the considered speaker, and the region \(R_2 \), all the sequences coming from other speakers of the group. Two approaches for gathering confusion data from a recognition pass of the training data are proposed: one based on the discrimination of the speech segments between speakers, and the second, on the discrimination of the speech segments between each speaker and a background model.

2.1. Inter-speaker discrimination

The problem of testing between \(s \) hypotheses can be stated as a classification problem [?]. Let \(S_1, \ldots, S_s \) be \(s \) speakers with models pdf \(p_1(X/\lambda), \ldots, p_s(X/\lambda) \) respectively. Suppose that independent \(D \)-variate acoustic observations \(X = \{x_1(s), \ldots, x_D(s)\} \) are available for each speaker \(j \), \(j = 1, \ldots, s \). Our aim is to divide the space of observations into mutually exclusive regions \(R_1, \ldots, R_s \). If an observation falls into \(R_i \) we can conclude that it comes from \(S_i \).

Let the misclassification cost of deciding that an observation comes from \(S_i \) as coming from \(S_j \) be \(c_{ij}(j) \). Let \(q_i \) be the a priori probability of drawing an observation from speaker \(S_i \) with density \(p_i(X/\lambda) \), \(i = 1, \ldots, s \). The minimum risk decision rule for known parameters \(\lambda \) is to assign \(X \) to \(R_k \) or \(S_k \) if

\[
\sum_{i=1}^{s} q_i \cdot p_i(x) \cdot c_{i,k} < \sum_{i=1}^{s} q_i \cdot p_i(x) \cdot c_{i,j}
\]

where \(j = 1, \ldots, s \). Suppose further that all misclassification costs are equal, then the rule becomes: classify \(X \) to \(R_k \) if

\[
\sum_{i \neq k} q_i \cdot p_i(x) < \sum_{i \neq j} q_i \cdot p_i(x)
\]

Subtracting \(\sum_{i=1}^{s} q_i \cdot p_i(x) \) from both sides of the previous expression, we obtain

\[
q_j \cdot p_j(x) < q_k \cdot p_k(x) \quad \text{or} \quad \frac{p_k(x)}{p_j(x)} > \frac{q_j}{q_k}
\]

and the observation \(X \) is in \(R_k \) if \(k \) is the index for which \(q_i \cdot p_i(x) \) is a maximum; that is, \(S_k \) is the most probable speaker. If we denote \(\frac{p_k(x)}{p_j(x)} \) by \(T_{kj} \), the expression becomes \(\frac{p_k(x)}{p_j(x)} > T_{kj} \); where \(T_{kj} \) is some threshold. If we want the two probabilities of error to be equal, we should set \(T_{kj} = 1 \). We obtain the log-likelihood ratio rule.

\[
\log \frac{p_k(x)}{p_j(x)} > 0
\]

If an observation vector \(X \) comes from the speaker \(S_k \) (e.g., drawn from \(p_k(x) \)) and \(p_k(x) > p_j(x) \), we can conclude that \(X \) is a discriminative segment otherwise \(X \) is a confusable segment. Applying the maximum likelihood rule, for each speaker \(S_i \), we divide all the training sequences into two sets: a discriminative set \(X_d \) and a confusable set \(X_c \). The confusable segments from all speakers are used to estimate a confusion world model (CM) distribution \(p_c(X/\lambda) \), and the discriminative segments are used to estimate a discriminative world model (DM) distribution \(p_d(X/\lambda) \). The discriminative model and confusion model are used to build a maximum likelihood detector (filter). The use of this filter is explained in the next section.

2.2. Speaker-background discrimination

To estimate a background model, the training data is pooled across a large pool of 272 speakers containing 140 male speakers and 132 female speakers from the Switchboard Corpus. We have used 10 sec of speech from each conversation side, and all the speakers are different from those used to train the system. The confusable segments are discarded from the training data and used to update the confusion model. The classification procedure is performed using the same principle as above.

\[
\log \frac{p_k(x)}{p_{bc}(x)} > 0
\]

This approach is less time consuming, because we do a pairwise comparison only.

3. MAXIMUM LIKELIHOOD DETECTOR

The confusable sections of speech are gathered from the testing data with the help of a maximum likelihood detector (filter) which is placed at the input of the recogniser. The filter will send to the recogniser only the observations matching the distribution function of the discriminative world model (DM). In others words, we impose to the test data to fit the characteristics described by the discriminative model. The trimming process is obtained as follow: Let \(X = \{x_1(s), \ldots, x_D(s)\} \) the testing observations coming from the speaker \(s \). And let \(p_d(X/\lambda) \) and \(p_c(X/\lambda) \) be the probability distribution function of the discriminative model an the confusion model respectively. Let \(D \) be the hypothesis that the segment \(X = \{x_1, \ldots, x_n\} \) is drawn from the pdf \(p_d(X/\lambda) \) and \(C \) be the hypothesis that the same segment is drawn from the pdf \(p_c(X/\lambda) \). We can state the
detection problem as the problem of testing between
\(D : X \sim p_d(X/\lambda), X \in R_D \) and \(C : X \sim p_c(X/\lambda), X \in R_C \) where \(R_D \) and \(R_C \) are non-empty sets which par-
tition the parameter space into two disjoint regions
\((R_D \cap R_C = \emptyset)\). The observation \(X \) is in \(R_D \) if \(\frac{p_d(x)}{p_c(x)} > T \);
where \(T \) is some threshold. If \(T = 1 \), we obtain the log-
likelihood ratio rule.

\[
\log \frac{p_d(x)}{p_c(x)} > 0
\]

Then, for each speaker, the test utterance is divided into two sequences \(X_{d,\text{test}} \in R_D \) and \(X_{c,\text{test}} \in R_C \):
\(X_{\text{test}} = (X_{d,\text{test}}, X_{c,\text{test}}) \). The sequences \(X_{d,\text{test}} \) are sent
to the recogniser and \(X_{c,\text{test}} \) are discarded.

4. DATABASE

The experiments were carried out using the SPIDRE Corpus
(SPeker IDentification REsearchCorpus) which is a subset
of the much larger Switchboard Corpus. We have used the
180 target conversations coming from 45 speakers
(27 males and 18 females). Three conversations are used
to train the models, and one conversation for testing. More
specifically:

- **Baseline system.** We trained the speakers models using
 1 minute of data from each of 180 conversation
 sides representing 45 speakers. The average amount
 of data per speaker is 3 minutes.

- **Discriminative system.** For each speaker, the previous
 data used to train the baseline system, is divided
 into two sets: the training set which uses 90 seconds
 (30 seconds from each conversation side) to train the
 speakers models and the classification set which uses
 the rest of the data (90 seconds) to gather the confus-
 able and discriminative sequences. The estimated
 models are used as auxiliary models to generate the
 discriminative and confusion data. Finally, the dis-
 criminative set is combined with the training set to
 form the new training data set. The confusion data
 set is used to train the world confusion model. More
details about the classification process are given in
the section 6.

- **Test protocol.** The test data consist of two segments
 \(t_1 \) and \(t_2 \) of 30 seconds length extracted from the test
 conversation. The segment \(t_2 \) is extracted from the
 end of the conversation.

5. EXPERIMENTS

The speech signal was transformed every 10 ms, using a
window of 25 ms, into 12-dimensional MFCC along with

<table>
<thead>
<tr>
<th>(\Delta t) (sec)</th>
<th>(\delta t = 2)</th>
<th>(\delta t = 1)</th>
<th>(\delta t = 0.500)</th>
<th>(\delta t = 0.250)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>82.22</td>
<td>82.22</td>
<td>87.00</td>
<td>82.22</td>
</tr>
<tr>
<td>(1)</td>
<td>80.00</td>
<td>82.22</td>
<td>84.50</td>
<td>82.22</td>
</tr>
<tr>
<td>(0.500)</td>
<td>82.22</td>
<td>84.50</td>
<td>87.00</td>
<td>84.50</td>
</tr>
<tr>
<td>(0.250)</td>
<td>80.00</td>
<td>82.22</td>
<td>82.22</td>
<td>77.80</td>
</tr>
</tbody>
</table>

Table 2. DM-CM detector. Speaker identification performance for different values of \(\Delta t \) and \(\delta t \).

The results of the experiment carried out on the baseline
system are reported in Table 1.

5.1. Experiments with the baseline system

The first experiment is carried out using the inter-speaker
discriminative approach and a test segment \(t_1 \) of length
30 seconds. The maximum likelihood detector (filter) is built
with the pair (DM-CM). The results (Table 2) show that a
considerable improvement is achieved (averaging 14 %
gain in performance) over the baseline system (from 73.33
% to 87 %) for \(\Delta t = 500 \) ms and \(\delta t = 500 \) ms. The re-
results for different values of \(\Delta t \) and \(\delta t \) are also compiled
and shown in Table 2. The second experiment is carried out using
the second method, when the background model is used
as a confusion model. We have considered two cases: the
case \(BM \), where the background model is the same as in
the training classification process and the case \(UPBM \),
when the background model is updated with the confus-
able frames. The results (Table 3) are given for \(\Delta t = 2 \) sec, and
different values of \(\delta t \). The method performs worse than the
inter-speaker discrimination, however, an appreciable gain
is achieved (averaging 11.00 % gain in performance) over
the corresponding first and second derivatives for a vector
dimension of 36. The baseline and the discriminative sys-
tems are based on a GMM with 128 Gaussians. Each Gauss-
ian mixture in the GMM has a diagonal covariance matrix.
Let \(\Delta t \) and \(\delta t \) be the discriminative train frame length and
the discriminative test frame length respectively. Experi-
ments carried out on the discriminative system were per-
formed with different values of \(\Delta t \) and \(\delta t \).
Table 3. BM-DM detector. Speaker identification performance for $\Delta t = 2$ sec, and different values of δt.

<table>
<thead>
<tr>
<th>Δt (sec)</th>
<th>BM</th>
<th>UPRBM</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta t = 2$</td>
<td>77.80</td>
<td>80.00</td>
</tr>
<tr>
<td>$\delta t = 1$</td>
<td>77.80</td>
<td>82.22</td>
</tr>
<tr>
<td>$\delta t = 0.500$</td>
<td>77.80</td>
<td>84.50</td>
</tr>
</tbody>
</table>

Table 4. DM-CM detector with segment t_2. Speaker identification performance for $\Delta t = 500$ ms and 250 ms and different values of δt.

<table>
<thead>
<tr>
<th>δt (ms)</th>
<th>500</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta t = 2$</td>
<td>80.00</td>
<td>80.00</td>
</tr>
<tr>
<td>$\delta t = 1$</td>
<td>84.50</td>
<td>82.22</td>
</tr>
<tr>
<td>$\delta t = 0.500$</td>
<td>88.90</td>
<td>80.00</td>
</tr>
</tbody>
</table>

6. DISCUSSION

We have presented a method to discriminate features between speakers using a decision theory approach. Before we conclude, we would want to point to the following:

Classification process. As mentioned previously, a half of training data is used to train the speaker models and the second half to generate the confusion and discriminative data. The reader has to take in mind that the data set used for classification must contain the data set used for training the models. However, the very good recognition performance on the training data (100% of the training utterances were recognised for $\Delta t = 2$, 1 sec and 95% for $\Delta t = 500$ ms) has led us to exclude the training data from the classification set for the mentioned values of Δt.

Amount of classification data. The model parameters have been estimated using the MLE principle. The computation, and probably the performance, can be improved by the use of small amount of data and adaptation methods such as MAP or MLLR.

7. CONCLUSION

This paper has discussed the use of inter-speaker discriminative training for GMM-based speaker identification system. It has been shown that a significant gain in performance can be obtained for highly mismatched telephone speech (averaging 16% of gain in performance) over the baseline system. We conclude that frames of length 500 ms are more discriminative between speakers when the component mixture is used to compute the likelihood ratio. We conclude also that the good results obtained with large sample reclassification would motivate investigation of small sample reclassification process (in order of syllabic length) using mixture components. We intend to further investigate this issue and other modifications in a global intra and inter-speaker discriminative framework to improve generalisation performance.

8. REFERENCES

