Comparative Analysis and Synthesis of Formant Trajectories of British and Broad Australian Accents

Qin Yan Saeed Vaseghi Ching-Hsiang Ho Dimitrios Rentzos Emir Turajlic

Department of Electronic and Computer Engineering
Brunel University, UK UB8 3PH
*Fortune Institute of Technology, Kaohsiung, Taiwan
{Qin.Yan, Saeed.Vaseghi, Dimitrios.Rentzos, EmirTuraijlic}@brunel.ac.uk *ch.ho@center.fjtc.edu.tw

Abstract

The differences between the formant trajectories of British and broad Australian English accents are analysed and used for accent conversion. An improved formant model based on linear prediction (LP) feature analysis and a 2-D hidden Markov model (HMM) of formants is employed for estimation of the formant trajectories of vowels and diphthongs. Comparative analysis of the formant values, the formant trajectories and the formant target points of British and broad Australian accents are presented. A method for ranking the contribution of formants to accent identity is proposed whereby formants are ranked according to the normalised distances between formants across accents. The first two formants are considered more sensitive to accents than other formants. Finally a set of experiments on accent conversion is presented to transform the broad Australian accent of a speaker to British Received Pronunciation (RP) accent by formant mapping and prosody modification. Perceptual evaluations of accent conversion results illustrate that besides prosodic correlates such as pitch and duration, formants also play an important role in conveying accents.

1. Introduction

Accents are differences in pronunciation by a community of people from a national or regional geographical area, or a social grouping. Accent is affected by differences in the phonetic transcriptions and the acoustic correlates of speech, including formants and their trajectories, pitch trajectory, pitch nucleus and duration parameters [1].

Accent is one of the main factors that impact automatic speech recognition (ASR) and text-to-speech synthesis (TTS). Performance of ASR systems is sensitive to accents and hence accent identification and modelling are essential for robust speech recognition [2]. Similarly accent models are applicable for accent morphing in text-to-speech synthesis systems.

The acoustics of accent are due to the differences in the configurations, positioning, tension and movement of laryngeal and supra-laryngeal articulator parameters. For example, in [3] Arslan and Hansen point out that generally non-native speakers of English do not produce the same tongue movement as native speakers, but produce accented sounds based on learned habits of tongue movements of their native language, which implies that their formants tend to move along the native language pronunciation. The difference in pitch and pitch trajectories in British and American English accents are analysed and presented in [4]. Recently, Harrington and Watson [5,6] explore the differences of formants between subclasses of Australian English: Broad Australian English, General Australian English and Cultivated Australian English and between New Zealand and Australian English.

The databases employed in this work for accent analysis are Australian National Database of Spoken Language (ANDSOL) for Australian English and Wall Street Journal Cambridge University (WSJCAM0) Database for British English. The subset of ANDSOL of broad Australian accent consists of 18 female and 18 male speakers with a total of 7200 utterances. The subset of WSJCAM0 of British English we use contains 40 female and 46 male speakers with 9476 utterances.

This paper presents a formant trajectory estimation method based on a two-dimensional time-frequency HMMs. A set of phoneme-dependent 2D-HMMs is trained to model the formants of a speaker’s voice. The HMMs are then used to estimate the formant trajectory of each vowel. From the formant trajectories the target point of each vowel is estimated as the point where the formants reach steady status. Formant correlates of accents are ranked according to their individual importance to discrimination of accents. Finally a set of experiments in accent conversion is conducted via formant trajectory mapping, pitch modification and duration modification.

2. Formant Trajectory Estimation

Although automatic formant analysis of speech has received considerable attention and a variety of approaches have been developed, the calculation of accurate formant features from the speech signal remains a non-trivial problem. In this paper, a formant estimation method based on 2D-HMMs [7,8] is applied to estimate the formant trajectory.

The 2D HMM-based formant classifier [7] may associate two or more formant candidates (i.e. LP model pole frequencies) F_{bi}, with the same formant b, in these cases formant estimation is achieved through minimization of a weighted mean square error objective function

$$\hat{F}_b(t) = \min_{F_b(t)} \sum_{i=1}^{I_{bi}} w_{bi}(t) \frac{(F_{bi}(t) - F_b(t))^2}{BW_b(t)^2}$$

(1)

where t denotes the frame index, b is the formant index, I_{bi} is the total number of the formant candidates classified as formant b. The squared error function is weighted by a perceptual weight $\frac{1}{(BW_b)^2}$ where BW_b is the formant bandwidth, and a probabilistic weight defined as
P(F|bλ) where bλ is the Gaussian mixtures models of bth formant state of a phoneme-dependent HMM of formants.

The success of this method can be seen in Figure 1 showing the very close match between the histograms of formant candidates of a phoneme and the corresponding Gaussian models of HMM states. It can also be seen that the peaks of estimated Gaussian curves and histograms, which occur at formant frequencies, coincide.

3. Formant Target Estimation

In order to obtain an average formant trajectory model for each phoneme, the estimated formant trajectories of the different examples of each phoneme are linearly time-warped to ensure the same duration. Then all the time-normalized trajectories for each phoneme are averaged.

During the realisation of each phoneme, the acoustic configuration of vocal tract traverses a time trajectory aiming to reach a target point in the formant space. Using the method described in [5,6], the acoustic target point of a vowel is marked as a single time point (a “static” spectral slice [9]) between the acoustics onset and offset of the vowel. For high front vowels, the target is marked at the point where F2 reaches a peak; for back vowels, the target is marked at the point where F2 reaches a trough; for open vowels, the target is marked at the point where F1 reaches a maximum. When there is no acoustic evidence of any kind for a target point, the target is marked at the vowel’s temporal mid-point. These results conform to existing acoustic studies of Australian English that show Broad Australian possesses a rather delayed vowel target point compared with New Zealand English, Cultivated Australian and General Australian English [5,6].

4. Ranking of Formant Correlates of Accents

In [8] it is pointed out that second formant usually has the widest frequency range compared to other formants. In order to assess the importance of each formant on conveying an accent A compared to a reference accent B the formants are ranked according to some distance measure. A simple formula for ranking the formant of accents A with reference to the formants of accent B is proposed as

\[
\text{Rank}_i = \sum_{v=1}^{V} \left(\frac{F_{A i} - F_{B i}}{0.5(F_{A i} + F_{B i})} \right)^2
\]

Where \text{Rank}(\cdot) can be a sorting function that sorts the formants in increasing or decreasing importance, FA i is the average gender-dependent ith formant of the vowel v from accent A, V is the number of vowels. Average formants of the vowels of each pair of accents are used in Equation (2) to obtain a ranking of formants influence in conveying accents. This formula is applied in other accent pairs as well (such as British and American, American and broad Australian). The experimental results rank the 2nd and the 1st formants as the most important two formants for accents, which are also consistent with perceptual evaluation in [8].

5. Accent Conversion

Analysis of formant spaces [8] and trajectories of different accents indicates that formants and their trajectories are important acoustic correlates of accents in addition to prosodic
and phonetic correlates which are traditionally regarded as correlates of accents. This section presents a set of experiments in accent conversion to change the accent of a broad Australian speaker into RP British accent. Each acoustic correlate of accents is independently modified. Results are perceptually evaluated by XAB [7] experiments.

5.1 Formant Transformation Methods

Since formant frequencies are among the most important features for voice synthesis, various frequency-warping methods have been developed. LP-spectrum warping and DFT-spectrum warping are two commonly used methods for changing the formants and the spectral shape of speech. In the following experiments, an LP-spectrum based phoneme-dependent frequency warping approach is used for synthesis of accent through mapping the formants.

In this method, three sets of parameters need to be estimated and transformed (Figure 3):

1. **Frequency difference between successive formants**, $F_{i+1} - F_i$
2. **Bandwidth associated with the resonance at each formant**, BW_i
3. **Spectral intensity differences between formants**, I_i

For simplicity, we assume that accents are not affected by bandwidth and intensity of resonance at formants [3]. Formants of each vowel are shifted according to the target to source formant ratios. The frequency warping function in the sub-band between the ith and the $(i+1)$th formants can be described as:

$$F_{i(i+1)} = \alpha_{i(i+1)} F_{i(i+1)}$$

where $i(i+1)$ is the sub-band index along the frequency and $i = 0,1,2,...$ (Figure 3). $F_{i(i+1)}$ is the frequency of source speech and $\alpha_{i(i+1)}$ is the mapped frequency. The frequency warping ratio $\alpha_{i(i+1)}$ is calculated by

$$\alpha_{i(i+1)} = \frac{f_{i+1}^T - f_i^T}{f_i^T - f_i^S}$$

where f_{i+1}^T is the average ith gender-dependent formant

Table 2: Average Formant Frequencies of Broad Australian and British English (female)

<table>
<thead>
<tr>
<th>Vowel</th>
<th>Australian English (Female) Formants</th>
<th>British English (Female) Formants</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>845 1532 3027 4058</td>
<td>745 1234 2952 3816</td>
</tr>
<tr>
<td>AE</td>
<td>664 2020 3070 4212</td>
<td>836 1740 2922 3999</td>
</tr>
<tr>
<td>AH</td>
<td>764 1575 2979 4014</td>
<td>713 1551 2935 3916</td>
</tr>
<tr>
<td>AO</td>
<td>486 924 3039 3938</td>
<td>450 942 2971 3799</td>
</tr>
<tr>
<td>EH</td>
<td>506 2341 3105 4184</td>
<td>675 1929 2961 4212</td>
</tr>
<tr>
<td>ER</td>
<td>712 1613 2783 3764</td>
<td>423 1306 2840 3796</td>
</tr>
<tr>
<td>IH</td>
<td>428 2105 2972 4202</td>
<td>512 1193 2863 3938</td>
</tr>
<tr>
<td>IY</td>
<td>358 2526 3102 4128</td>
<td>358 2526 3102 4128</td>
</tr>
<tr>
<td>OH</td>
<td>586 1142 2926 3725</td>
<td>586 1142 2926 3725</td>
</tr>
<tr>
<td>UW</td>
<td>371 1613 2783 3764</td>
<td>371 1613 2783 3764</td>
</tr>
<tr>
<td>UW</td>
<td>423 1306 2840 3796</td>
<td>423 1306 2840 3796</td>
</tr>
<tr>
<td>AW</td>
<td>765 1634 2897 3979</td>
<td>765 1634 2897 3979</td>
</tr>
<tr>
<td>EW</td>
<td>509 2226 3037 4134</td>
<td>509 2226 3037 4134</td>
</tr>
<tr>
<td>OW</td>
<td>528 1738 2830 3962</td>
<td>528 1738 2830 3962</td>
</tr>
<tr>
<td>OY</td>
<td>506 1381 2950 3903</td>
<td>506 1381 2950 3903</td>
</tr>
<tr>
<td>EA</td>
<td>654 1961 2936 4152</td>
<td>654 1961 2936 4152</td>
</tr>
<tr>
<td>IA</td>
<td>453 2192 2930 4070</td>
<td>453 2192 2930 4070</td>
</tr>
<tr>
<td>UA</td>
<td>460 1793 2962 4023</td>
<td>460 1793 2962 4023</td>
</tr>
</tbody>
</table>

Figure 3: Illustration of LP spectrum based method for frequency warping and spectral shaping.

The average formant frequencies (Table 2) of both British and Broad Australian accents are obtained from HMMs of formants [8]. They are used to obtain the formant warping ratios. A smooth spectrum warping function is then interpolated through these warping ratios.

Prosodic parameters such as pitch and duration are modified using VoiceMorph, a software developed in our lab. For each voiced group, pitch trajectory and duration are adjusted according to the parameters of the corresponding voiced/unvoiced group of the target speech. However, the average pitch of the source speaker remains unchanged to maintain the speaker identity.
5.2 Experiments and Results

The source and target speech are down-sampled to 10kHz from the original sampling rates of 20kHz (ANDOSL) and 16kHz (WJSAM0). The aim is to avoid unnecessary high frequencies and formants above 5kHz. The speech are then segmented and labeled. HMMs of formants are then trained on LP poles of segmented and phonemically labeled speech.

Using the estimates of the warping ratios, LP-spectrum mapping is employed, to move the formants of vowels in utterances from broad Australian speakers towards the average formants of vowels of British RP accent. In total four formants of the source speaker are mapped towards the target accent. The mapped and original formant trajectories of some vowels are displayed in Figure 4. Formants trajectories are moved up or down according to the ratios of the formants from target accent (British) and source accent (broad Australian). It can be observed from Figure 4 that the overall shape of each formant trajectory of the vowels remains unaffected after formants are moved up and down while the start and end of formant trajectories are slightly changed. The reason is that the formants trajectories of each pair of adjacent phonemes need to remain continuous at the segment boundaries to keep the formant trajectories smooth. It is also possible to transform a vowel to another vowel in a different accent by adjusting the formants towards those of the target vowel. After moving the formants of broad Australian accent towards those of British RP accent, a certain amount of residue broad Australian accent still can be heard. This is due to the remaining correlates of accent such as those contained in pitch trajectory and prosody. Hence prosodic parameters are also modified.

XAB method is used to perceptually evaluate the success of accent conversion techniques used here. The source, target and transformed speech are presented to listeners. The listeners are then asked if the transformed voice has a similar accent to the target or the source speaker. In XAB test, the speech samples A and B are from two set of different speakers with British and broad Australian accents. The speech sample A is the transformed source speech. The source, transformed and target speech have same content. Each listener has to identify 7 XAB test sets. In our experiments 78% of listeners’ answers indicated that, after accent transformation, the broad Australian source speech have a similar accent to British target accent. The experiments demonstrate that formant correlates are among the important factors of accents.

6. Conclusion

This paper presented a comparative analysis of formant trajectories of British and Broad Australian English accents. 2D HMM formant classifiers are used for estimation of formant trajectories. From the formant trajectories the target point of each vowel in the formant space is estimated as the point where the formant values reach a “static” status. It is found that broad Australian possesses a delayed vowel target compared with British. The formants are ranked according to their contribution to accent and the first and second formants are determined as the most crucial formants to accent as to their individual contribution to discrimination of accent pairs.

A set of experiments in accent conversion is performed. Formants frequencies of vowels are shifted according to the estimated formant frequency warping factors. After modifications of the formant trajectories, the pitch trajectory and the timing (duration) of the source broad Australian speech, listener subjects agree that the converted speeches have similar accent to British.

For future work more efforts are required on modeling prosody structure of accents and on extension of the experiments to other accent pairs of such as British and American.

7. Acknowledgements

We would like to thank EPSRC for funding project no GR/M98036.

8. References