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ABSTRACT

In this paper, we present ongoing work on prosody prediction for
speech synthesis. Our approach considers sentences as treelike
structures and decides on the prosody from a corpus of such struc-
tures through tree similarity measurements in a nearest neighbour
context. We introduce a syntactic structure and a performance
structure representation, the tree similarity metrics considered,
and then we discuss the prediction method. Experiments are cur-
rently under process to qualify this approach.

1. INTRODUCTION

Over the past few years, speech synthesis has been the subject
of many successful research works. While the synthesis qual-
ity has been highly improved, the production of a natural prosody
still remains a difficult and challenging problem. Many automatic
prediction methods have already been tried for this topic, includ-
ing decision trees [1], neural networks [2], and HMMs [3]. In this
work, we are introducing a new prediction scheme. The original
aspect of our approach is to consider sentences as treelike struc-
tures and to decide on the prosody from a corpus of such struc-
tures. The prediction is achieved from the prosody of the closest
sentence of the corpus through tree similarity measurements us-
ing the nearest neighbour algorithm. We think that reasoning on a
whole structure rather than on local features of a sentence should
better reflect the many relations influencing the prosody. Our ap-
proach is an attempt to achieve such a goal.

The data used in this work is a part of the Boston University Radio
(WBUR) News Corpus [4]. The prosodic information consists
of ToBI labeling of accents and breaks [5]. The syntactic and
part-of-speech informations were obtained from the part of the
corpus processed in the Penn Treebank project [6], representing
an overall set of 320 sentences.

In the following sections, we firstly describe the tree structures
defined for this work, then present the tree metrics that we are
using, and finally discuss how they are manipulated to achieve
the prosody prediction.

2. TREE STRUCTURES

So far we have considered two types of structures in this work: a
simple syntactic structure and a performance structure [7]. They
have been chosen for their simplicity, their common character,
and to define more than one experimentation universe. Their

comparison in use should be helpful for providing some inter-
esting knowledge about the usefulness or the limitations of the
different elements of information included in each structure, re-
garding our application.

2.1. Syntactic Structure

The syntactic structure considered is built exclusively from the
syntactic parsing of the given sentences. This parsing, with its
relative syntactic labeling, constitutes the trunk of the tree struc-
ture. Below this backbone, the subtrees represent the words of
the sentence, with their part-of-speech tags. Additional levels of
nodes can be added deeper in the tree to represent the syllables of
each word, and the phonemes of each syllable.

Figure 1 shows the syntactic structure for the sentence: “Hen-
nessy will be a hard act to follow”, extracted from the corpus,
accordingly to the syntactic parsing given inside. For clarity as-
pects, the syllable level has been omitted in the representation.

S

NP will [MD] VP

Hennessy [NNP] NP

act [NN]a [DT] hard [JJ] S

VP

follow [VB]to [TO]

be [VB]

Figure 1: Syntactic structure for the sentence “Hennessy will be
a hard act to follow”. The strings in square brackets are syn-
tactic or part-of-speech tags. (The syntactic tags are: S: simple
declarative clause, NP: noun phrase, VP: verb phrase. The part-
of-speech tags are: NNP: proper noun, MD: modal, VB: verb in
base form, DT: determiner, JJ: adjective, NN: singular noun, TO:
special label for ”to”.)

2.2. Performance Structure

The performance structure used in our approach is a combination
of syntactic, part-of-speech and phonological informations. Its
upper part is a binary tree where each node represents a break
between the two parts of the sentence contained into the subtrees

����������	�
��	���������������������
�	���	����������
��������������

��
�
�����
�	

���� ���!�"��������

ISCA Archive
����#$$%%%&
��	"������&���$	���
'�

10
.2

14
37

/I
C

SL
P.

20
00

-5
08



of the node. This binary structure defines a hierarchy: the closer
to the root the node is, the more salient (or stronger) the break is.

The lower part of the structure represents the phonological
phrases into which the whole sentence is divided by the binary
structure, and uses mainly the same representation levels as in
the syntactic structure (cf. section 2.1). A first addition is done
with a main syntactic tag for each phonological phrase as to code
the syntactic information, no more present in the upper part of
the structure (see Figure 2 for an illustration). The second differ-
ence comes from a simplification performed by joining the words
into phonological words. This is done using basic rules, gath-
ering function words around content words (four content words
categories are considered: nouns, adjectives, verbs and adverbs).
Finally, no break is supposed to occur inside these phonological
words, from their definition and the binary structure above them.

Figure. 2 shows a possible performance structure for the same
example: “Hennessy will be a hard act to follow.” The syllable
representation has also been omitted.

B 3

B 1

2BNP

VP NP

VP

will be [VB] a hard [JJ] act [NN]

to follow [VB]

Hennessy [NNP]

Figure 2: Performance structure for the sentence “Hennessy will
be a hard act to follow”. The meanings of the syntactic and part-
of-speech labels are identical to those in Figure 1. B1, B2 and B3

are break-related nodes. The structure illustrates that there are
three breaks in this example sentence: B3, the more important,
between the words “act” and “to”; then B1 between the words
“Hennessy” and “will”; and then B2, the less salient of the three,
between the words “be” and “a”.

2.3. Discussion

As exposed in section 2.1, the syntactic structure follows the la-
bels and parsing employed in the corpus description. Its construc-
tion does not present any difficulties, for any sentence of known
or unknown prosody.

However a problem occurs with the performance structure. It has
been shown in section 2.2 that this structure contains not only
syntactic and part-of-speech information but also prosodic infor-
mation with the break values. Building this structure for the sen-
tences in the corpus can be done since the real prosodic values
are available. Nevertheless, the aim of this work is to predict the
prosody using the tree structures (see sections 3 and 4), so these
break data should not be available in practice for a new sentence.
Therefore, to achieve a prediction using this structure represen-
tation, we firstly need to predict the location and the salience of
the breaks in a given sentence. The currently used method, de-
fined by Bachenko and Fitzpatrick [8], provides rules to infer a
default phrasing for a sentence. Basically, it firstly divides a sen-

tence into phonological words and phrases (the lower parts of our
structure), and then establishes the salience of the breaks between
the phrases, using simple considerations about the length of the
phonological phrases (defining the hierarchy of the upper binary
part of our structure). Since this process furnishes an estimation
of the phrasing, we will have to quantify its effects.

This first step in the prediction is relatively simple, but it should
only be considered as a temporary solution because of its default
character. One sentence will always get the same default phras-
ing, whereas it can be pronounced differently by real speakers,
with many prosodic differences for each one. To be fully adapt-
able with any prosodic corpus, and to reflect the prosodic charac-
teristics of any speaker, we are trying to develop a more corpus-
based approach for this phrasing prediction.

Lastly, as a corpus-based method, this work supposes correct syn-
tactic parsing and part-of-speech labeling. Since this initial infor-
mation is the realization of human annotators [6], it should be
kept in mind that the accuracy of the final prediction can be af-
fected by some errors, which should be evaluated regarding the
error resulting from the prediction scheme itself.

3. TREE METRICS

In the previous section, we have presented the definition of the
tree structures considered in this work. Now, we need to deter-
mine the tools to manipulate them to predict the prosody. We
have considered several similarity metrics to calculate the “dis-
tance” between two tree structures. These metrics are inspired
from the Wagner and Fisher’s editing distance [9].

3.1. Principles

In an analogous way to this well known string editing distance, it
is necessary to introduce a small set O of elementary transforma-
tion operators between two trees:

� oI : the insertion of a node;

� oD: the deletion of a node;

� oS : the substitution of a node by another one.

It is then possible to determine a set ST1T2 of specific operation
sequences that transform any given tree T1 into another tree T2.
Specifying costs for each elementary operation (possibly a func-
tion c of the node values) allows the evaluation of a whole trans-
formation cost C by adding the operation costs in the sequence:

C(s) =
X

o2s

c(o) ; s 2 ST1T2 : (1)

Therefore the tree distance D between the two trees T1 and T2 can
be defined as the cost of the sequence minimizing this sum:

D(T1; T2) = min
s2ST1T2

C(s): (2)

3.2. Considered Metrics

This principle is the base for the development of many metrics.
The differences come from the application conditions which can



be set on the operators. In our experiments, two such tree metrics
are tested.

The first one was defined by Selkow [10]. From its specifica-
tions, the insertion or deletion of a node involves respectively the
insertion or deletion of the whole subtree depending of the node.
Moreover, only substitutions between nodes at the same depth
level in the trees are allowed. These strict conditions should per-
mit to locate principally the very close structures, since two iden-
tical subtrees, at different depths in their respective structures, are
put in relation through a large sequence of elementary operations,
leading to a high distance value.

The other one, defined by Zhang [11], allows the substitutions of
nodes whatever theirs locations are inside the structures. It also
permits the insertion or deletion of lonely nodes in the heart of
the structures. Compared to [10], these less rigorous stipulations
should not only retrieve the very close structures, but also other
ones which would not have been found by the previous metric.

Furthermore, these two metrics preserve the order of the nodes
in the trees during a transformation, an essential condition in our
application, where this order implies the order of the words in the
corresponding sentences.

Finally, these two algorithms also provide a mapping between the
nodes of the trees. This mapping illustrates the operations which
led to the final distance value: the parts of the trees which were
inserted or deleted, and the ones which were substituted or un-
changed. This information will be helpful in the final prediction
process.

3.3. Operation Costs

The distance algorithm principles exposed in section 3.1 have
shown that a tree T1 is said to be “close” to another tree T2 be-
cause of the definition of the operator costs. From this consider-
ation, and from the definition of the tree structures in this work,
these costs have been set to achieve two main goals. The first one
is to allow the only comparison of nodes of the same structural
nature. For example, in performance structures, a node coding
for a break in T1 should only be compared to a node coding a
break in T2, and not to a node representing a syntactic label or a
syllable. The second and most important goal is to represent the
linguistic “similarity” between comparable nodes or subtrees, for
instance to set that an adjective may be “closer” to a noun than to
a determiner.

These operation costs are currently manually set. To decide on
the scale of values to affect is not an easy task, and needs some
human expertise. The first experiments have shown good results,
but a formal validation is needed. Another possibility would be to
further automate the process, using machine learning techniques
to set these values.

4. PROSODY PREDICTION

Sections 2 and 3 have presented the tree representations and the
metrics considered in this work. We now describe how they can
be used to predict the prosody of a sentence. The simple method
that we are currently using is the nearest neighbour algorithm:

given a new sentence, the principle is to find the closest match
among the corpus of sentences of known prosody, and then to use
its prosody to infer the one of the new sentence.

From the tree metric algorithms manipulated, it is possible to re-
trieve the relationships which led to the final distance value: the
inserted, deleted, substituted and unchanged parts (see section
3.2). This mapping between the nodes of the two structures also
links the words of the represented sentences. It then gives a sim-
ple way to know where to apply the prosody of one sentence onto
the other one.

Unfortunately, this process may not be as easy. The ideal map-
ping would be that each word of the new sentence has a corre-
sponding word in the closest sentence (preserving the order of
the words). Hopeless, the two sentences may not be as closed
as desired, and some words may have been inserted or deleted in
their corresponding structures. To decide on the prosody for these
words is a problem. We are currently developing a new technique
based on analogy [12], a potential way to improve and complete
our method. It is based on the knowledge brought by other sim-
ilar pairs of structures. As exposed above, the distance provides
a mapping between the two structures. We would like to find in
the corpus one or more couples of structures sharing the same
tree transformation. The understanding of the prosody impact of
an analogous transformation should allow us to apply a similar
prosodic modification onto the initial couple.

5. FIRST RESULTS

So far we have run experiments to find the closest match of held-
out corpus sentences using the syntactic structure and the perfor-
mance structure, for each of the distance metrics. We are using
both the “actual” and estimated performance structures to quan-
tify the effects of this estimation. Cross-validation tests have been
chosen to validate our method.

The experiments are not all complete, but an initial analysis of the
results does not seem to show many differences between the tree
metrics considered. We believe that this is due to the small size of
the corpus we are using. With only around 300 sentences, most
structures are very different, so the majority of pairwise compar-
isons should be very distant. We are currently running experi-
ments where the tree structures are generated at the phrase level.
This strategy implies some changes. It is necessary to adapt the
tree metrics to take into consideration the location of the phrases
in the sentences. Two similar structures should be privileged if
they have a correspondent location in their respective sentences.

In this work, we are focusing at first on the location prediction
of phrase breaks and tones. Considering the two tree representa-
tions, we expect to obtain more accurate results with the perfor-
mance structure than with the syntactic one. It is widely agreed
upon that there is not a full correspondence between prosodic
and syntactic phrases [13], and the information used in the per-
formance structure should better reflect this compromise.

Another point to mention is the computational complexity of our
approach. The tree metrics used are based on dynamic program-
ming, a time-consuming technique, the effects of which are ac-
centuated by the searches through the corpus. Therefore we are



trying to define a general way to limit the search in such a tree
structure space, for example based on tree indexing for efficiency
[14].

6. CONCLUSION

We have presented the development of a new prosody prediction
method. Its original aspect is to consider sentences as treelike
structures. To predict the prosody of a sentence, we are using
tree similarity metrics to find the closest match in a corpus of
such structures, and then its prosody is used to infer the one of
the first sentence. Further experiments are needed to validate this
approach.

Future work will concentrate on the introduction of focus labels.
In a dialogue context, some extra information can be available to
precise the speech semantics, which is useful to refine the into-
nation. With the tree structures that we are using, it is easy to
introduce special markers upon the nodes of the structure. Ac-
cording to their locations, they can indicate some focus either on
a word, on a phrase or on a whole sentence. The prediction pro-
cess would be kept unchanged, with a simple adaptation of the
tree metrics.
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