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ABSTRACT

In statistical speech recognition, misclassification often occurs
when there is a mismatch between the incoming signal and the
acoustics model inside the recognizer.  In order to combat this
problem, techniques such as Cepstral Mean Subtraction, Vocal
Tract Normalization, adaptation and pronunciation model can
be used.

In this paper, we proposed a new approach based on
transformation technique where the output distribution function
in the HMM model, a Gaussian probability density function,
could be transformed to match the estimated distribution of the
incoming signal by using a memoryless invertible nonlinearity
function.  Since the new density still has a Gaussian form, the
function could be completely characterized by using the
Expectation Maximization (EM) algorithm.

1. INTRODUCTION

In many speech recognition systems in use today, the
acoustics model is based on some form of a Hidden
Markov Model (HMM), e.g. a sub-word model, with
states composing of a mixtures of Gaussian density
functions to model the different phonetic utterance
represented by incoming speech features.  This model has
to be trained for a long time using speech samples that are
closely matched to the testing conditions, otherwise,
performance will degrade dramatically.  This mismatch
can be compensated by techniques such as Cepstral Mean
Subtraction (CMS), Vocal Tract Length Normalization
(VTL), adaptation, or pronunciation model.

CMS tends to remove the distortion caused by the
channel by subtracting a long-term mean of the cepstral
features.  In VTL, the frequency warping due to vocal
tract length difference between different speakers is
removed.  Adaptation removes the speaker’s style
including accent, articulation and physical difference.
Lastly, the pronunciation model tries to capture the
different pronunciation pattern across various speakers.
All these methods tend to focus on only a few
mismatches between the trained model and the testing
data.

In this paper, we propose a new transformation technique
that is more general than the others described above.

This method transforms the existing Gaussian mixture
model to some other mixture model that matches better
statistically to the testing data than the Gaussian itself.  In
section 2, the method will be described in details.  The
results will be presented in the following section.  The
paper is then concluded in section 4.

2. TRANSFORMATION TECHNIQUE

The transformation technique transforms the Gaussian
probability density function to match the estimated
distribution of the incoming signal using a memoryless
invertible nonlinearity function g-1(.).  To illustrate, let V
denotes a vector of Gaussian random variables with
marginal cumulative distribution function PV(.), and O be
a vector of random variable with arbitrary univariate
density and a cumulative distribution function PO(.).
According to [2], the nonlinearity can then be determined
as:
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Using this nonlinearity, the new density function can be
expressed as:
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where µV and RV are the mean vector and covariance
matrix for the random vector V, g’(oi) is the first order
derivative of the function g(oi) with respect to oi.

In the context of speech recognition, the output
probability bjm(ot) of the new distribution function inside
each HMM states becomes:

V Og-1(.)
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where j denotes the state, m denotes the mixture index
with a maximum number of M mixtures, and cjm is the
mixture weight.  The vector ot is the observation vector.

Since the new density in Eq. (2) still has Gaussian form,
it can be completely characterized by the memoryless
nonlinearity, its mean vector and covariance matrix.
These parameters, as well as the mixture weight, initial
state probability πi, state-transition probability ai j, can all
be estimated by using the EM algorithm.  The re-
estimation formulas for the initial state distribution, state-
transition probability distribution, mixture weight, mean,
and covariance are given below.

Initial State Distribution:
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State-Transition Probability Distribution:
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Mixture Weight:
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Mean:
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Covariance:
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These equations are all derived by the EM algorithm and
are very similar to the ones without the transformation.
The only differences are the output distribution, mean,
and covariance as stated in Eq. (3), (7), and (8).  The only
remaining problem is to find an appropriate g(.) function
to successfully transform the trained Gaussian models in
the HMM to match the distribution of the observation
vectors.

Determining the “right” g(.) is a difficult task since there
is no analytical way of figuring out what it is.  Several
different distribution functions can be used to see which
function would produce a better model under a given
condition.  One of the functions that were used was the
Laplacian function.  This function was used because of its
heavy-tailed distribution, which can more accurately
model non-homogenous noise [3].  Homogeneous can be
modeled by Gaussian’s.

According to Eq. (1), the first step is to normalize the
features by subtracting off the mean and dividing it by the
variance.  Then the cumulative distribution of the
Laplacian is computed with the resulting value as the
argument for the inverse Gaussian CDF.  After the
inverse Gaussian CDF is taken, the mean and variance are
then applied according to Eq. (1) to compute the
transformation function.  Any initial value for the
Gaussian mean and variance can be used since they will
subsequently be updated during the re-estimation process.
The mean and variance for the Laplacian were fixed as 0
and 1 throughout the simulation.  These values were used
initially by the Gaussian as well.  Once g(.) is determined,
Eq. (3) - (8) can be used for re-estimation.

3. RESULTS

In this paper, only a preliminary experiment using
Laplacian univariate density is performed.  As discussed
earlier, Laplacian is considered to be a good function to
start with because of its heavy-tailed property.

The simulation consisted of two parts: training and
recognition.  The recognizer was trained using the clean
TIMIT database with 55 phones and was tested using the
clean and noisy TIMIT data.  The noisy data were created
by adding appropriate amount of white noise, which
created data with SNR ranging from 20 to 0 dB.  These
speech data were transformed into the popular Mel-
Frequency Cepstral Coefficients with delta-, delta-delta-,
and energy values; making a total of 39 components per
vector.  The number of states per model is 5 with 2 states
being non-emitting nodes.  The number of mixtures was 5
per state.

Once the training for the new model is done, recognition
can be carried out utilizing Eq. (3) during Viterbi
decoding to obtain the output probability.  All the re-



estimated parameters from training were used to form a
new HMM.

Table 1 shows the recognition rate of applying the
features into the two different acoustics models.  Looking
at the results, the system with the transformed acoustics
model performs better than the Gaussian one on the
average with a gain of 2% in recognition accuracy.

Table 1: Comparison of Recognition Rate between
Gaussian Model and Transformed Model

SNR Gaussian Model Transformed
Model

Clean 95.34% 95.45%

20 dB 80.01% 82.86%

15 dB 69.50% 71.62%

10 dB 55.21% 57.05%

5 dB 42.90% 44.67%

0 dB 29.89 30.20%

4. CONCLUSION

A speech training and recognition system has been built
based on a new acoustics model using the transformation
technique.  According to the results, the transformed
model gives a performance improvement of about 2% on
the average versus the regular Gaussian mixture model.

Future work will involve distribution functions other than
Laplacian in order to obtain other transformation function

that have more potentials in giving better results.

Throughout the experiment, the mean and variance for
the Laplacian were fixed.  These values would allow to
vary in the future according to the corresponding re-
estimated Gaussian parameters to see if there is any
performance gain.
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Figure 1: Recognition Rate for a HMM based 
speech recognizer using the Gaussian

and Transformed Model
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