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Abstract

Much theoretical work has been done on the tonal structure of
languages in the Bantu family. However, most of these studies
are not supported by physical measurements, or even a consis-
tent model for mapping from linguistic constructs to such mea-
surements. As a first step towards addressing this deficiency,
we report on initial measurements regarding the relationship be-
tween fundamental frequency and linguistic tone in isiZulu. Af-
ter choosing a suitable algorithm for pitch extraction, we have
correlated a number of linguistically assigned tone values with
measured values for fundamental frequency. These measure-
ments indicate a fairly complex relationship between tone and
pitch, and suggest that the commonly observed ‘falling’ tone in
isiZulu may be a context-specific realization of the high tone.

1. Introduction
Intonation is a paradoxical aspect of human language [1]. It is
universally used yet highly variable across languages; although
humans naturally produce and perceive intonation as a rich
channel of communication, it has to date not been a productive
part of most automatic speech-processing systems. Even for
well-studied languages (such as languages in the Indo-European
family) much remains to be learnt. For example, the equiva-
lent of an International Phonetic Alphabet for the unambigu-
ous, language-independent description of intonation and other
prosodic phenomena currently seems like a distant ideal, de-
spite ongoing efforts to define such a system.

An analysis of intonation is complicated by the fact that
measurable, physical quantities such as fundamental frequency,
intensity, and duration depend in a complicated manner on lin-
guistic variables such as tone, stress and quantity. Thus, the
intuitive notion that tone is solely expressed in the fundamen-
tal frequency of an utterance, and stress in intensity or duration,
does not hold up under closer inspection [2]. The interaction be-
tween lexical and non-lexical contributions to the intonation of
an utterance further complicates the relationship between mea-
surable and linguistic variables.

In this regard, the status of the Southern African languages
in the Bantu family is quite interesting. On the one hand, into-
nation in these languages has attracted much attention because
of its historical role in elucidation of autosegmental phonology
[3]. On the other hand, these theoretical studies have not been
matched by commensurate objective measurement of physical
quantities, and even some basic issues on the status of tone in
important languages within this group remain in dispute [4].

This leaves those who wish to develop technology for Bantu
languages in a difficult situation. Whereas there is ample theo-
retical evidence that prosodic factors should receive significant
attention in these languages, there is little by way of concrete

models to guide one in this process. We have therefore em-
barked on a programme aimed at understanding the relationship
between linguistic and physical variables of a prosodic nature in
this family of languages. Our eventual aim is to produce a full
account linking phonology, phonetics and objective measure-
ments.

Given the large number of interacting variables, we ap-
proach this goal by studying closely related variables on adja-
cent linguistic levels. For the purposes of the current paper, we
therefore investigate the relationship between the fundamental
frequency (F0) and the phonetic tone levels that occur in a num-
ber of isiZulu utterances. (isiZulu is the largest family in the
Nguni subfamily of the Bantu family of languages; it is also the
most common first language of citizens of South Africa.)

In Section 2 below, we review some basic facts about the
fundamental frequency of a speech signal, and then describe a
set of experiments that was undertaken to select an appropri-
ate algorithm for extracting F0 in isiZulu utterances. Section
3 contains our initial experimental results on the relationship
between F0 and phonetic tone in isiZulu, and in Section 4 we
summarize our plans to extend these initial measurements in or-
der to develop a practically useful algorithm for the generation
of F0 contours.

2. Accurately measuring fundamental
frequency in isiZulu

2.1. Fundamental frequency and pitch

The fundamental frequency (F0) of a periodic signal is the in-
verse of it period, which in turn is defined as the smallest pos-
itive member of the set of time shifts that leave the signal in-
variant [5]. Speech waveforms are never absolutely periodic, so
that approximate invariance has to be used in defining the fun-
damental frequency of a speech waveform. With an appropriate
approximation, F0 correlates well with the subjective experi-
ence of pitch. It is therefore common practice to use the terms
F0 and pitch interchangeably, and in the remainder of this paper
we will do the same.

A number of algorithms have been developed to extract F0
from a speech waveform (see [6] for a review). These algo-
rithms generally differ in the way they compute the degree of in-
variance in a signal, and in the ways that they use additional in-
formation (such as temporal smoothness) to adapt to the period-
by-period changes that occur in speech. The development of
algorithms that do this in an accurate and computationally effi-
cient manner remains a topic of active research [7]. However,
to our knowledge, these algorithms have not been evaluated for-
mally on a Nguni language such as isiZulu. Although we do
not expect that pitch extraction algorithms will differ greatly
between different languages, it is worthwhile to verify this as-
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sumption. In order to decide on an appropriate algorithm for
our further analysis, and to test the assumption that isiZulu ut-
terances are served well by that algorithm, we have therefore
performed a number of analyses with two state-of-the-art algo-
rithms.

2.2. Methodology

Yin [6] and the Praat [8] pitch tracker are two widely used algo-
rithms for F0 extraction. In order to compare these algorithms,
F0 was extracted from a number of spoken utterances in three
different languages, namely English, French and isiZulu. In the
French and English databases, each (acoustic) utterance is ac-
companied by a laryngograph trace. The laryngograph mea-
sures the electrical resistance between electrodes on either side
of the throat, and therefore provides a fairly accurate measure-
ment of the fundamental frequency that was actually produced
by the speaker. Hence, F0 as determined from the laryngograph
data is used as ground truth when comparing the algorithms on
the French and English databases.

Both Yin and the Praat algorithm are characterized by a
number of tunable parameters. In order to make a fair com-
parison, the values recommended by the algorithm developers
were used for all the parameters, except where the same param-
eter occurred in both algorithms: these were set to reasonable
and equal values. In particular, the minimum allowable pitch
frequency was set to 30 Hertz, the maximum to 2000 Hertz, and
a window size of 0.02s was used.

Since the laryngograph data is itself a temporal waveform,
F0 has to be extracted from the laryngograph before it can be
used as baseline. Fortunately, both algorithms produced very
similar results (as would be expected from the highly periodic
nature of laryngograph data in voiced speech) and thus either
could be used as the basis for the experiments. The pitch values
extracted by Yin for all the laryngograph databases was conse-
quently used as the basis for our comparisons.

Pitch extraction algorithms can fail in a number of ways.
They can fail to detect periodicity when voicing is present, or
assign pitch values to unvoiced regions of speech. In voiced
speech, gross errors occur when the algorithm computes a com-
pletely wrong estimate of pitch (for example, pitch halving or
pitch doubling), and fine errors reflect on the detailed compu-
tation of the pitch period. In order to understand these various
classes of errors, we calculated a number of measures for each
of the files in our corpus:

1. The number of gross errors for each file was calculated.
This was defined as the number of times that the value
obtained from the laryngograph differed from the corre-
sponding value for the acoustic file by more than a set
threshold. We used a threshold of 50 Hertz.

2. We also computed the number of false positive detec-
tions of pitch (when the laryngograph did not indicate
voicing, but a pitch value was extracted from the acoustic
waveform) and, conversely, the number of false negative
detections.

3. The mean square error was calculated only across those
pitch periods where both the laryngograph data and the
acoustic data indicated the presence of voicing, and
where no gross error occurred.

Since no laryngograph data was available for the isiZulu
database, we computed the number of gross differences be-
tween the two methods (rather than the number of gross errors),

and also computed the mean squared difference between the an-
swers produced by the two algorithms. Finally, a manual pro-
cess was used to decide which of the two algorithms was in
error when gross differences occurred. That is, a random se-
lection of files was made. Each file was manually inspected at
the points were the fundamental frequency extracted by the two
algorithms differed by more than the threshold value. At these
points, the period (and hence the pitch) was calculated manually
to decide which of the algorithms is in error.

2.3. Databases

Four databases were used in this study. These comprise a total
of 1.16 hours of speech. The first three included a laryngograph
waveform recorded together with the speech.

• DB1: Two male speakers of English produced a total 0.2
hours of speech.

• DB2: One male pronounced 150 English sen-
tences for a total of 0.17 hours of speech. The
database is available with the laryngograph data from
http://www.festvox.org/examples/cstr us ked timit.

• DB3: Two male and two female speakers each pro-
nounced between 42 and 55 French sentences for a total
of 0.46 hours of speech.

• DB4: An adult male whose first language is isiZulu pro-
duced the isiZulu voice recordings. He pronounced 150
sentences with a total of 0.33 hours of speech.

2.4. Algorithms

The compared algorithms (Yin and the Praat tracker) are briefly
described below.

• Yin is an implementation of the method developed by De
Cheveigne [6]; it combines autocorrelation and Average
Magnitude Difference Function(AMDF) methods [9]
with a set of modifications and post-processes that re-
duce common errors of those algorithms.

• The Praat pitch tracker performs an acoustic periodic-
ity detection on the basis of an accurate autocorrelation
method, as described in Boersma [10]. This method
tends to be more accurate, noise-resistant, and robust,
than methods based on cepstrum or combs, or the origi-
nal autocorrelation methods. In order to estimate a sig-
nal’s short term autocorrelation function on the basis of
a windowed signal, this method divides the autocorrela-
tion function of the windowed signal by the autocorrela-
tion function of the window. It is available with the Praat
toolkit at http://www.fon.hum.uva.nl/praat/.

2.5. Results

2.5.1. Gross Errors

The average number of gross errors1 measured for the English
and French databases, across all files, as well as the number of
gross errors manually measured for each on the isiZulu database
are reported in Table 1. Across all three languages, the Praat
algorithm tends to make fewer gross errors (possibly because of
the more sophisticated post-processing done by Praat as part of
its tracking algorithm). Alternatively, these differences may be
a consequence of the relatively conservative voicing detection
algorithm used by Praat (see below).

1Note that the number of errors is not comparable across databases,
as this number is correlated with utterance length



Table 1: Mean number of gross errors per utterance for Praat
and Yin across all databases, as computed from a comparison
with laryngograph data(English or French) or manual inspec-
tion(isiZulu)

Database Praat Yin

English DB1 3.868 12.181
English DB2 0.227 10.267

French 49.674 65.873
isiZulu 0.8 1.3

2.5.2. Errors in the detection of voicing

Tables 2 and 3 contain the average number of false positive and
false negative detections of voicing, respectively, for the various
databases. These results indicate that the two algorithms have
different thresholds for voicing detection - Praat makes fewer
positive errors, at the cost of additional missed detections.

Table 2: The average number of false positive voicing detec-
tions per utterance

Database Praat Yin

English DB1 0.0533 26.68
English DB2 0.2828 34.101

French 17.699 65.650

Table 3: The average number of false negative voicing detec-
tions per utterance

Database Praat Yin

English DB1 75.393 10.919
English DB2 38.727 4.147

French 63.843 15.789

2.5.3. Mean Square Error

Table 4 contains the mean square errors obtained for the En-
glish and French databases, expressed as a percentage of the
measured F0 values. Both algorithms are highly accurate, with
the Praat algorithm consistently more accurate than Yin. (The
values reported in Table 4 are very close to those obtained in
[6]; the small observed differences are most likely the result of
differences in our experimental protocols.) As with the gross er-
rors, the relative superiority of Praat may either be the result of
intrinsic algorithmic factors, or the more conservative voicing
detection used in Praat.

The mean squared difference between the values obtained
with the two algorithms on the isiZulu database (for which
we did not have a laryngograph-derived baseline) was 0.115%.
This difference is somewhat smaller than would be expected
from the values in Table 4, but broadly in line with those val-
ues.

2.6. Conclusion: algorithms for the determination of F0

Both Yin and the Praat pitch tracker perform very well on the
databases studied here; however, the Praat algorithm performs
somewhat better than Yin in terms of gross and fine error. The

Table 4: The average mean squared error of both algorithms
when compared with laryngograph measurements

Database % Mean Squared Error
Praat Yin

English DB1 0.193 1.819
English DB2 0.081 1.884

French 0.387 1.076

main negative aspect of the Praat algorithm is that it is more
prone to missing frames in which voicing was actually present.
This disadvantage may weigh heavily in applications such as
speech recognition, but is relatively unimportant for our pur-
poses of analyzing the relationship between F0 and tone. Praat
will therefore be used in the rest of our work. Also, the numer-
ical results reported above, as well as our subjective inspection
of the computed values, confirm that the performance on isiZulu
data is very comparable to that on the other two languages. This
gives us confidence that the algorithm will perform well on our
isiZulu data.

3. The relationship between pitch and tone:
Initial measurements for an isiZulu speaker
3.1. Methodology

For this part of the experiment, a first-language isiZulu speaker
investigated the transcriptions of the isiZulu speech recorded in
DB4, and manually marked each of the syllables in each word as
high or low. In order not to bias this process, the marking was
done without listening to the voice recordings; the transcriber
was asked to mark each syllable as he would produce it in the
sentence context provided.

All utterances were segmented at the phonemic level, and
labelled. For each syllable, the initial and final F0 values were
calculated with Praat. These values were then subjected to a
number of analyses, in order to arrive at an understanding of
the relationship between the measured pitch values and the tone
predicted by the transcriber.

An example of the extracted the pitch contour and the seg-
mented phoneme boundaries is shown in Figure 1. The nuclear
vowel of each syllable is marked H (high) or L(low).

Figure 1: A portion of a signal extracted from an isiZulu
speech recording

3.2. Results

As expected, the mapping between transcribed tone and mea-
sured F0 is fairly complex, and not simply a matter of F0 being



large for high tones and small for low tones. The most salient
observations from our initial analysis were the following:

• The strongest overall determinant of the pitch values in a
segment is the position of the syllable in the sentence, be-
cause of the general tendency of pitch to decline through-
out an utterance (as is the case in many of the languages
of the world [1]). This trend can be seen in Figure 1,
and average F0 values of syllables marked as high are
plotted as a function of the position of the syllable in the
utterance in Figure 2.
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Figure 2: Mean F0 for the first 6 syllables in a sentence

• Relative to this trend line, the syllables marked as high
do indeed have larger F0 values on average (in our cor-
pus, the F0 of syllables marked as ‘H’ is, on average, 8%
higher than that of ‘L’ syllables at the same location in
an utterance).

• If the tone pattern HHL occurs in three consecutive syl-
lables, the second of these syllables is fairly consistently
produced with falling pitch. If ‘falling’ is defined as a
syllable in which pitch decreases by at least 10% during
the syllable nucleus, we observe a falling pitch in 78%
of ‘H’ syllables preceded by an ‘H’ and followed by an
‘L’, whereas fewer than 30% of the ‘H’ syllables in other
contexts have falling pitch.

4. Conclusion and future work
We have found that both Yin and the Praat pitch tracking al-
gorithm are highly accurate over several languages – including
isiZulu, which is our primary focus. The Praat algorithm is a
little more accurate (though also a little more conservative in
detecting voicing), and was used in our analysis.

Our initial exploration of isiZulu suggested a number of
regularities. Potentially the most significant finding is the sug-
gestion that the ‘falling’ pitch contour is a context-specific re-
alization of a high tone; this would resolve some of the uncer-
tainty surrounding the status of the falling tone in the ‘tonology’
of isiZulu [11]. We are in the process of analyzing a larger cor-
pus of utterances to further investigate this and related issues;
in order to construct a model of intonation, we would also like
to relate the observed tone levels to predictable quantities of a
lexical and supra-lexical nature. Other topics under investiga-
tion include an analysis of the inter-speaker variability of these
observations, and also comparisons to closely related languages

such as isiXhosa, and more distantly related languages such as
Sepedi.
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