ABSTRACT

This paper describes the LIMSI Arabic Broadcast News system which produces a vowelized word transcription. The under 10x system, evaluated in the NIST RT-04F evaluation, uses a 3 pass decoding strategy with gender- and bandwidth-specific acoustic models, a vowelized 65k word class pronunciation lexicon and a word-class 4-gram language model. In order to explicitly represent the vowelized word forms, each non-vowelized word entry is considered as a word class regrouping all of its associated vowelized forms.

Since Arabic texts are almost exclusively written without vowels, an important challenge is to be able to use these efficiently in a system producing a vowelized output. Since a portion of the acoustic training data was manually transcribed with short vowels, enabling an initial set of acoustic models to be estimated in a supervised manner. The remaining audio data, for which vowels are not annotated, were trained in an implicit manner using the recognizer to choose the preferred form. The system was trained on a total of about 150 hours of audio data and almost 600 million words of Arabic texts, and achieved word error rates of 16.0% and 18.5% on the dev04 and eval04 data, respectively.

1. INTRODUCTION

This paper describes some recent work improving our broadcast news transcription system for Modern Standard Arabic as described in [9]. By Modern Standard Arabic we refer to the spoken version of the official written language, which is spoken in much of the Middle East and North Africa, and is used in major broadcast news shows. The Arabic language poses challenges somewhat different from the other languages (mostly Indo-European Germanic or Romance) we have worked with. Modern Standard Arabic is that which is learned in school, used in most newspapers and is considered to be the official language in most Arabic speaking countries. In contrast many people speak in dialects for which there is only a spoken from and no recognized written form. Arabic texts are written and read from right-to-left and the vowels are generally not indicated. It is a strongly consonantal language with nominally only three vowels, each of which has a long and short form. Arabic is a highly inflected language, with many different word forms for a given root, produced by appending articles (“the, and, to, from, with, ...”) to the word beginning and possessives (“ours, theirs, ...”) on the word end. The right-to-left nature of the Arabic texts required modification to the text processing utilities. Written texts are by and large non-vowelized, meaning that the short vowels and gemination marks are not indicated. There are typically several possible (generally semantically linked) vowelizations for a given written word, which are spoken. The word-final vowel varies as a function of the word context, and this final vowel or vowel-/n/ sequence is often not pronounced. Thus one of the challenges faced when explicitly modeling vowels in Arabic is to obtain vowelized resources, or to develop efficient ways to use non-vowelized data. It is often necessary to understand the text in order to know how to vowelize and pronounce it correctly. We investigate using the Buckwalter Arabic Morphological Analyzer to propose possible multiple vowelized word forms, and use a speech recognizer to automatically select the most appropriate one.

2. ARABIC LANGUAGE RESOURCES

The audio corpus contains about 150 hours of radio and television broadcast news data from a variety of sources including VOA, NTV from the TDT4 corpus, Cairo Radio from FBIS (recorded in 2000 and 2001 and distributed by the LDC), and Radio Elsharq (Syria), Radio Kuwait, Radio Orient (Paris), Radio Qatar, Radio Syria, BBC, Medi1, Aljazeera (Qatar), TV Syria, TV7, and ESC [9].

A portion of the audio data were collected during the period from September 1999 through October 2000, and from April 2001 through the end of 2002 [9]. These data were manually transcribed using an Arabic version of Transcriber [1] and an Arabic keyboard. The manual transcriptions are vowelized, enabling accurate modeling of the short vowels, even though these are not usually present in written texts. This is different from the approach taken by Billit et al. [2] where only characters in the non-vowelized written form are modeled. Each Arabic character, including short vowel and geminate markers, is transliterated to a single ascii character. Transcription conventions were developed to provide guid-
ance for marking vowels and dealing with inflections and gemination, as well as to consistently transcribe foreign words, in particular for proper names and places, which are quite common in Arabic broadcast news. The foreign words can have a variety of spoken realizations depending upon the speaker’s knowledge of the language of origin and how well-known the particular word is to the target audience. These vowelized transcripts contain 580k words, with 50k distinct non-vowelized forms (85k different vowelized forms).

Vowelized transcripts were not available for the TDT4 and FBIS data. Training was based on time-aligned segmented transcripts, shared with us by BBN, which had been derived from the associated closed-captions and commercial transcripts. These transcripts have about 520k words (45k distinct non-vowelized forms).

Combining the two sources of audio transcripts results in a total of 1.1M words, of which 70k (non-vowelized) are distinct.

The written resources consist of almost 600 million words of texts from the Arabic Gigaword corpus (LDC2003T12) and some additional Arabic texts obtained from the Internet. The texts were preprocessed to remove undesirable material (tables, lists, punctuation markers) and transliterated using an slightly extended version of Buckwalter transliteration1 from the original Arabic script form to improve readability.

The texts were then further processed for use in language model training. First the texts were segmented into sentences, and then normalized in order to better approximate a spoken form. Common typographical errors were also corrected. The main normalization steps are similar to those used for processing texts in the other languages [4, 6]. They consist primarily of rules to expand numerical expressions and abbreviations (km, kg, m2), and the treatment of acronyms (A. F. B. → A_F_B). A frequent problem when processing numbers is the use of an incorrect (but very similar) character in place of the hamza), 3 foreign consonants (/p,v,g/), and 6 vowels (short and long /i/, /a/, /u/). In a fully expressed vowelized pronunciation lexicon, each vowelized orthographic form of a word is treated as a distinct lexical entry. The example entries for the word “kitaAb” are shown in the top part of Figure 1. An alternative representation uses the non-vowelized orthographic form as the entry, allowing multiple pronunciations, each being associated with a particular written form. Each entry can be thought of as a word class, containing all observed (or even all possible) vowelized forms of the word. The pronunciation is on the left of the equal sign and the written form on the right.

The pronunciation lexicon contains 65539 words and 528,955 phone transcriptions. The OOV rate with the 65k vocabulary ranges from about 3% to 6%, depending upon the test data and reference transcript normalization (see Table 1).

The decoder was modified to handle the new style lexicon in order to produce the vowelized orthographic form associated with each word hypothesis (instead of the non-vowelized word class).

3. PRONUNCIATION LEXICON

Letter to sound conversion is quite straightforward when starting from vowelized texts. A grapheme-to-phoneme conversion tool was developed using a set of 37 phonemes and three non-linguistic units (silence/noise, hesitation, breath). The phonemes include the 28 Arabic consonants (including the emphatic consonants and

Figure 1: Example lexical entries for the vowelized and non-vowelized pronunciation lexicons. In the non-vowelized lexicon, the pronunciation is on the left of the equal sign and the written form on the right.
overlapping segment. For each speech segment, the word recognizer determines the sequence of words in the segment, associating start and end times and an optional confidence measure with each word. The recognizer makes use of continuous density HMMs for acoustic modeling and n-gram statistics for language modeling. Each context-dependent phone model is a tied-state left-to-right CD-HMM with Gaussian mixture observation densities where the tied states are obtained by means of a decision tree.

Word recognition is performed in three passes, where each decoding pass generates a word lattice which is expanded with a 4-gram LM. Then the posterior probabilities of the lattice edges are estimated using the forward-backward algorithm and the 4-gram lattice is converted to a confusion network with posterior probabilities by iteratively merging lattice vertices and splitting lattice edges until a linear graph is obtained. This last step gives comparable results to the edge clustering algorithm proposed in [8]. The words with the highest posterior in each confusion set are hypothesized.

Pass 1: Initial Hypothesis Generation - This step generates initial hypotheses which are then used for cluster-based acoustic model adaptation. This is done via one pass (less than 1xRT) cross-word trigram decoding with gender-specific sets of position-dependent triphones (5700 tied states) and a trigram language model (38M trigrams and 15M bigrams). Band-limited acoustic models are used for the telephone speech segments. The trigram lattices are rescored with a 4-gram language models.

Pass 2: Word Graph Generation - Unsupervised acoustic model adaptation is performed for each segment cluster using the MLLR technique [7] with only one regression class. The lattice is generated for each segment using a bigram LM and position-dependent triphones with 11500 tied states (32 Gaussians per state).

Pass 3: Word Graph rescoring - The word graph generated in pass 2 is rescored after carrying out unsupervised MLLR acoustic model adaptation using two regression classes.

Acoustic models

The acoustic models are context-dependent, 3-state left-to-right hidden Markov models with Gaussian mixture. Two sets of gender-dependent, position-dependent triphones are estimated using MAP adaptation of SI seed models for wideband and telephone band speech [5]. The triphone-based context-dependent phone models are word-independent but word position-dependent. The first decoding pass uses a small set of acoustic models with about 5700 contexts and tied states. A larger set of acoustic models, used in the second and third passes, cover about 15800 phone contexts represented with a total of 11500 states, and 32 Gaussians per state. State-tying is carried out via divisive decision tree clustering, constructing one tree for each state position of each phone so as to maximize the likelihood of the training data using single Gaussian state models, penalized by the number of tied-states [4]. A set of 152 questions concern the phone position, the distinctive features (and identities) of the phone and the neighboring phones.

A set of contrastive acoustic models were trained only on the audio data from LDC (72 hours of data from VOA, NTV, and Cairo Radio), for which the short vowels were determined automatically. The small set of acoustic models used in the first decoding pass have 5500 contexts and tied-states, and the larger set has 12000 contexts and 11500 tied states with 32 Gaussians per state.

The training data were also used to build the Gaussian mixture models with 2048 components, used for acoustic model adaptation in the first decoding pass.

Language models

The word class n-gram language models were obtained by interpolation [10] backoff n-gram language models trained on subsets of the Arabic Gigaword corpus (LDC2003T12) and some additional Arabic texts obtained from the Internet. Component LMs were trained on the following data sets:

1. Transcriptions of the audio data, 1.1M words
2. Agence France Presse (May94-Dec02), 94M words
3. Al Hayat News Agency (Jan94-Dec01), 139M words
4. Al Nahar News Agency (Jan95-Dec02), 140M words
5. Xinhua News Agency (Jun01-May03), 17M words
6. Addustour (1999-Apr01), 22M words
7. Ahram (1998-Apr01), 39M words
8. Albayan (1998-Apr01), 61M words
9. Alhayat (1998), 18M words
10. Alwatan (1998-2000), 29M words
11. Raya (1998-Apr01), 35M words

The language model interpolation weights were tuned to minimize the perplexity on a set of development shows from November 2003 shared by BBN. For the contrast system, the transcriptions of the non-LDC audio data were removed from the language model training corpus, reducing the amount of transcripts to about 520k words. Table 1 gives the OOV rates and perplexities with and without normalization of the reference transcripts for the language models used in the Primary and Contrast systems. Normalization of the reference transcripts is seen to have a large effect on the OOV rate.

5. Experimental Results

Table 2 gives the performance of the Primary and Contrast systems on the NIST RT-03 and RT-04 development and test data sets (www.nist.gov/speech/tests/rt). The RT-03 development data was shared by BBN, and consists of four 30-minute broadcasts from January 2001 (2 VOA and 2 NTV). The RT-03 evaluation data are comprised of broadcast each from VOA and NTV, dating from February 2001. The RT-04 development data consist of 3 shows broadcasts at the end of November 2003 from Al-Jazeera.
and Dubai TV. The RT-04 evaluation data are from the same sources, but from the month of December.

<table>
<thead>
<tr>
<th>Condition</th>
<th>dev03</th>
<th>eval03</th>
<th>dev04</th>
<th>eval04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>19.5</td>
<td>24.7</td>
<td>24.4</td>
<td>23.8</td>
</tr>
<tr>
<td>LDC AM</td>
<td>17.7</td>
<td>23.6</td>
<td>24.8</td>
<td>-</td>
</tr>
<tr>
<td>Base+LDC</td>
<td>17.4</td>
<td>23.0</td>
<td>21.9</td>
<td>23.3</td>
</tr>
<tr>
<td>+new word list</td>
<td>17.7</td>
<td>22.0</td>
<td>21.5</td>
<td>23.4</td>
</tr>
<tr>
<td>+mllt, cmllr</td>
<td>16.4</td>
<td>21.6</td>
<td>20.3</td>
<td>21.7</td>
</tr>
<tr>
<td>+gigaword LM</td>
<td>14.7</td>
<td>20.0</td>
<td>18.4</td>
<td>20.6</td>
</tr>
<tr>
<td>+pron</td>
<td>13.2</td>
<td>16.6</td>
<td>16.0</td>
<td>18.5</td>
</tr>
<tr>
<td>Contrast system</td>
<td>13.5</td>
<td>16.4</td>
<td>17.6</td>
<td>20.2</td>
</tr>
</tbody>
</table>

Table 2: Word error rates on the RT-03 and RT-04 dev and eval data sets for different system configurations, using the eval04 glm files distributed by NIST.

The baseline system had acoustic models trained on only the non-LDC audio data, and the language model training made use of about 200 M words of newspaper texts with most of the data coming from the years 1998-2000, and early 2001. With this system, the word error rate is about 20% for dev03, and 24% for the other data sets. The second entry (LDC AM) gives the word error rates with the acoustic models trained only on the LDC TDT4 and FBIS data. The word error is lower for the dev03 data, which can be attributed to the training and development data being from the same sources. The error rates are somewhat higher on the other test sets. Pooling the audio training data, as done for the primary system acoustic models, gives lower word error rates, and also exhibits less variation across the test sets. The remaining entries show the effects of other changes to the system. A new word list was selected using an automatic method, that did not necessarily include all words in the audio transcripts. Incorporating MLLT feature normalization and CMLLR resulted in a gain of over 1% absolute on most of the data sets. Finally, the language model and word list were updated using the Gigaword corpus which also included more recent training texts, and pronunciation probabilities were used during the consensus network decoding stage, resulting in a word error rate of 16.0% on the dev04 data and 18.5% on eval04. This entry corresponds to our primary system submission. The results of the contrast system are shown in the last entry of the table.

6. CONCLUSIONS

This paper has reported on our recent development work on transcribing Modern Standard Arabic broadcast news data. Our acoustic models and lexicon explicitly model short vowels, even though these are removed prior to scoring. In order to be able make use of non-vowelized audio and textual resources, the recognition lexicon entries are word-classes which regroup all derived vowelized forms along with the associated phonetic forms. The resulting 65k word-class vocabulary contains 529k phone transcriptions. The explicit internal representation of vowelized word forms in the lexicon may be useful to provide an automatic (or semi-automatic) method to vowelize transcripts. Successful use of audio data without explicit vowels can reduce the cost and ease of data transcription.

Our previous Arabic broadcast news system [9] had a word error rate of about 24% on the RT-04 dev and eval data. By improving the acoustic and language models, updating the recognizer word list and pronunciation lexicon, and the decoding strategy, a relative word error rate reduction of over 30% was achieved. On another set of 14 BN shows from July 2004 (about 6 hours of data from 12 sources), a word error of about 16.5% is obtained.

REFERENCES