Evolving emotional prosody

Cecilia Ovedsotter Alm†, Xavier Llorà‡
†Department of Linguistics, ‡NCSA
University of Illinois, Urbana-Champaign
ebbaalm@uiuc.edu xllora@illigal.ge.uiuc.edu

Abstract

Emotion is expressed by prosodic cues, and this study uses the active interactive Genetic Algorithm to search a wide space for SAD and ANGRY parameters of intensity, F0, and duration in perceptual resynthesis experiments with users. This method avoids large recorded databases and is flexible for exploring prosodic emotion parameters. Solutions from multiple runs are analyzed graphically and statistically. Average results indicate parameter evolution by emotion, and appear more distinct for SAD. Solutions are quite successfully classified by CART, with duration as main predictor. Index Terms: emotions, prosody, interactive evolution, aiGA.

1. Introduction

Emotion is expressed by prosodic cues, but their interplay is an open question, which is complicated by a challenging search space. Common procedure for emotional speech research depends on recording and analyzing large databases. Instead, this work uses the active interactive Genetic Algorithm (aiGA) [1] to evolve emotional prosody in perceptual resynthesis experiments. Within this framework, fundamental parameters of emotional prosody become an optimization problem, approximated by searching perceptual space of listeners via interactive feedback. In contrast to unit or parameter estimation based on emotional speech databases, e.g. [2] [3], the method only requires NEUTRAL utterances as starting point, and user preferences guide the direction of the efficient aiGA. Thus, there is no need to record large emotion databases, and parameter findings are not limited to what is found in data; instead models evolve more freely, as permitted by imposed bounds.

2. Related work

Modifications in F0, intensity, and duration are facets of emotional prosody [4]. While ANGER is often characterized by increased speech rate, F0, and intensity, SADNESS is assumed marked by opposite behavior e.g. [5]. Other features have been suggested, but with less evidence, e.g. voice quality [6]. Synthesizing emotional speech has been attempted with various techniques [7]. EmoSpeak [8] allows manual manipulation of many parameters with an interesting dimensional interface, but parameters were fitted to a database and literature. An interesting study drew on a Spanish emotional speech corpus for Catalan emotional prosody [9]. Despite much previous work, emotional profiles remain unclear [10]. Fresh work may contribute to increased understanding of emotional prosody, and the suggested approach rephrases the research question as: on average, how is a particular emotion best rendered in synthetic speech? A step has been taken before toward structured search [11], but seemed to use a simple iGA, which ignores important considerations in interactive computation such as user fatigue and flexible targets [12] [13]. GAs [14] are iterative search procedures that resemble natural adaptation phenomena. Issues and applications in interactive evolutionary computation have been surveyed [12], as have recent advances in aiGA theory [13]. AiGA has been successful for speech, by interactively estimating cost functions for unit-selection TTS [1]; aiGA ensured high intra-run consistency in subjective evaluations and decreased user evaluations compared to a simple iGA, i.e. combating user fatigue.

3. Experimental design

Interactive evaluation was used to evolve emotional prosody with aiGA developed by [13] [1]. In each run, a user’s feedback guided the process to estimate performance and evolve a synthetic model beyond what was presented to the user (for details, cf. [1]). AiGA assumed variable independence and built a probabilistic model, in this case based on a population of normal distributions with the UMDAc algorithm [16]. The output of each run was an evolved synthetic normal model (μ, σ) for each prosodic variable.

In this experiment, users listened to and evaluated pairs of resynthesized utterances. The aiGA had parameter vectors or individuals with prosodic parameters for resynthesizing 1-word utterances. Each individual had 3 values for Int (intensity), F0 (mean F0), and Dur (total duration; i.e. word tempo) ∈ [0, 1], encoded as proportions deviating from the original neutral word at 0.5, with truncation applied if the synthetic model evolved beyond [0, 1]. Each run had 3 iterations, which [1] found sufficient, and a user evaluated 22 pairs of sounds in a run. Individuals were initialized randomly with a different seed for each day of the experiment, except that one individual’s values were set according to trends in the literature for each emotion (see sec. 2). The search space for each variable was delimited by upper and lower bounds, cf. Table 2, adjusted to the original voice to avoid unnatural speech.

Conversion between actual values for resynthesis and their corresponding proportion in [0, 1], as encoded for the aiGA by

Table 1: Words used as resynthesis basis

<table>
<thead>
<tr>
<th>Monosyllabic</th>
<th>Disyllabic</th>
<th>Trisyllabic</th>
</tr>
</thead>
<tbody>
<tr>
<td>sa, brith, face, tan</td>
<td>ballet, person, cherry, tantan</td>
<td>barlet, person, cherry, tantan</td>
</tr>
</tbody>
</table>

†Listeners agree cross-culturally [15] above chance on ANGRY vs. SAD speech, which supports normality. The true distribution remains unknown.
Overall distribution (synthetic): INTENSITY (runs = 120) and over the μr sample are also included. Some columns may partially hide others.

The curves can be seen as representing the overall distribution (μr, σr) for the variables Int, F0 and Dur, respectively, where:

\[
\mu^* = \frac{\Sigma r \cdot \mu_r}{n}, \quad \sigma^* = \sqrt{\frac{\Sigma r \cdot \sigma_r^2}{n}},
\]

where \(n\) is the number of runs \(r\) completed (e.g. for SAD runs \(n = 120\), or for monosyllabic \(n = 80\)). The pooled standard deviation \(\sigma^*\) is an estimate of the larger population \(P\) (with unseen ANGRY/SAD cases). In contrast, the sample standard deviation \(s\) is larger, and this difference may be due to the number of runs being quite small. For completeness, histograms over the \(\mu_r\) sample are also included.\(^\text{3}\)

4. Results and discussion

For each run \(r\) of the \(4 \cdot 10 \cdot 6 = 240\) completed runs, the values (with proportion encoding) for Int, F0 and Dur for its final best individual and final evolved synthetic model (i.e. evolved \(\mu_r\) and \(\sigma_r\)) were extracted with a python script, with matlab6.1 used for plotting and statistics. The data set of best individuals is henceforth called BI, and for evolved synthetic models ESM. The analysis intended to clarify that emotions’ variables yielded distinct prosodic profiles, that aiGA was indeed evolving emotional prosody (i.e. not prosody by syllabic type), and what the averaged prosodic models were. The results representing the overall distribution of runs, based on ESM for the individual prosodic variables, are in Figs. 1 - 2, given proportion encoding \(\in [0, 1]\) with truncation. The curves can be seen as representing the overall distribution \((\mu^*, \sigma^*)\) for the variables Int, F0 and Dur, respectively, where:

\[
\mu^* = \frac{\Sigma r \cdot \mu_r}{n}, \quad \sigma^* = \sqrt{\frac{\Sigma r \cdot \sigma_r^2}{n}},
\]

\(n\) is the number of runs \(r\) completed (e.g. for SAD runs \(n = 120\), or for monosyllabic \(n = 80\)). The pooled standard deviation \(\sigma^*\) is an estimate of the larger population \(P\) (with unseen ANGRY/SAD cases). In contrast, the sample standard deviation \(s\) is larger, and this difference may be due to the number of runs being quite small. For completeness, histograms over the \(\mu_r\) sample are also included.\(^\text{3}\)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Unit</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sound Int</td>
<td>mel (Hz)</td>
<td>124 (139)</td>
<td>227 (282)</td>
</tr>
<tr>
<td>Mean F0</td>
<td>ratio</td>
<td>0.70 (shorter)</td>
<td>1.80 (longer)</td>
</tr>
</tbody>
</table>

\(^1\)Resynthesis quite robust with some F0 or Int inconsistencies (perhaps due to automatic tracking); deemed noninvasive by listening and compared to variability by user, voice, word. Dur could partly evolve with more stability. Also, due to client browser, a few runs were pruned and restarted.

\(^2\)Some columns may partially hide others.
Fig. 1 shows that the overall distribution separates emotions, with some overlap for Int and F0, but not for Dur. As expected, the mean of Dur was shorter for ANGRY speech, and longer for SAD. For the mean of Int, the relative position of emotions to each other was as expected, but SAD was at the NEUTRAL middle. The mean of F0 showed opposite behavior than the majority literature, with slightly decreased near NEUTRAL F0 for ANGRY, but increased F0 for SAD. In contrast, syllabic types do not separate, cf. Fig. 2, and thus, do not seem to make a difference for average behavior.

When resynthesizing words with \(\mu_i \) values, SAD appeared more distinct than ANGRY, and ANGRY differed mildly from NEUTRAL, although certain words seemed angrier. Better SAD synthetic speech has been noted before [9]. The ANGRY emotion family may also be thus more diverse, and vary more.

Beyond isolated variables, Fig. 3(a-b) visualize runs in 3D as points in proportion encoding for 3 dimensions (Int, F0, and Dur) for BI and ESM (truncated \(\mu_i \) values for ESM).\(^5\) Despite outliers, and quite large estimated \(s \) for an emotion given its points and dimensions,\(^6\) Fig. 3(a) indicates a trend of 2 clouds of points by emotion, which again contrasts with non-separation by syllabic type in 3(b).\(^7\) As a run’s ESM and BI points do not necessarily occur at same place, overall clouds seem similar for ESM and BI in 3(a).\(^8\)

Next, for each prosodic variable, 2-way ANOVAs were done at 95% confidence level for data sets BI and ESM (with truncation), followed by a multiple comparison for significant main factors (using \texttt{matlab6.1’s anova2} and \texttt{multcompare}). Multiple comparison did not consider interactions and should be interpreted with caution. Results are in Table 3. The first test considered syllable types and emotions, and only the emotion factor showed significant difference. Interactions were not significant, and perceptual differences appeared due to emotion, and not to syllable type. The second test covered users (persons A, B, C and D) and emotions. Again, for all variables, emotion was a significant factor. For F0 and Dur user was also significant, and interaction between factors was always significant. The third test regarded users and emotion-syllable type task. The emotion-syllable type task was a significant factor, and so were interactions (except for Int in ESM), as were users for, again, F0 and Dur. Multiple comparisons showed that all tests grouped by emotion, and for the second and third tests, person A, a linguist expert, was involved when user was a significant factor. Feedback indicated A decided more analytically; novice users may be less “contaminated” by formal knowledge. However, user impact remains a point for further research since significant interactions were observed which are not yet well understood, and only 4 users were involved. Table 4 shows user behavior by emotion, prosodic variable (truncated \(\mu_i \) for ESM), and data set, and indicates its complexity. Variation is quite noticeable, but Dur appears less varied for most subjects, at least for SAD.

\(^{12}\)CART (as implemented by M. Riley) was used on BI and ESM to see how far the binary distinction between SAD and ANGRY models obtained from runs could be learned, and to inspect what features supported prediction. Each example, labeled either SAD or ANGRY, had proportions for intensity, F0, and duration as features (non-truncated \(\mu_i \) for ESM).\(^9\) Mean precision, recall, and

\(^{5}\)Resynthesis (incl. variation) by system with \(\mu_i \) values: http://www.linguistics.illinois.edu/grads/ebbasm/alGApilot/alGApilot6.1-STAR.zip.

\(^{6}\)Note as caution that 3D plots are merely descriptive, and may be visually misinforming due to dimensionality, scaling, or point overlap.

\(^{7}\)For example, for BI \(s_{\text{sad}} = 0.32, s_{\text{ang}} = 0.43 \) when \(s_{\text{emotion}} = \sqrt{s_{\text{emotion}}^2 + s_{\text{syllable}}^2} \).

\(^{8}\)16% of BI ANGRY equaled the individual set to literature values.

\(^{9}\)Only 1 ESM fold had a decision node with value beyond \([0, 1]\) range.
<table>
<thead>
<tr>
<th>Em-model</th>
<th>Mean prec</th>
<th>Mean recall</th>
<th>Mean F</th>
<th>% non-unique exs</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANG-ESM</td>
<td>0.88</td>
<td>0.93</td>
<td>0.88</td>
<td>0.05 (3 types)</td>
</tr>
<tr>
<td>ANG-BI</td>
<td>0.95</td>
<td>0.92</td>
<td>0.90</td>
<td>0.05 (3 types)</td>
</tr>
<tr>
<td>SAD-ESM</td>
<td>0.93</td>
<td>0.93</td>
<td>0.91</td>
<td>0.05 (3 types)</td>
</tr>
<tr>
<td>SAD-BI</td>
<td>0.92</td>
<td>0.95</td>
<td>0.92</td>
<td>0.05 (3 types)</td>
</tr>
</tbody>
</table>

Table 5: 10-fold cross validation means from CART classifying SAD and ANGRY evolved synthetic models (ESM) and best individuals (BI). Data set had 240 instances, i.e. 24 test examples in each fold. Mean results are well above the 50% baseline.

F-score based on 10-fold cross validation are in Table 5. Interestingly, despite the sample variation, on average CART performed well above the 50% naïve baseline at distinguishing SAD and ANGRY instances. For ESM, 0.9 mean precision, 0.88 mean recall, and 0.88 mean F-score was obtained for both SAD and ANGRY predictions. For BI, performance even increased slightly, which may relate to BI having more repeated feature vectors, cf. col. 5 in Table 5. Inspection of decision trees showed that duration was mostly used as sole predictor. 5 ESM folds also used F0 for predictions, but intensity was not used. This may indicate a hierarchy of prosodic feature importance, and that some features may be subject to and show more vs. less variability; future work will clarify.

5. Conclusion

Given an initial study of 1-word utterances, the efficient aiGA was used to obtain average models of emotional prosody in interactive resynthesis experiments, with sadness appearing more distinct. At this point, microprosody and syllabic length appear less important, which supports word-level encoding, although some words seem better rendered than others with averaged solution, and user influence requires more work. Future experiments will include more users, longer utterances, and more emotions. Evaluating solutions for emotion recognition and naturalness could also be interesting. To conclude, aiGA has potential for evolving emotional prosody. Analysis indicated that average intensity, F0 and duration behaved differently for the 2 emotions, and F0 showed an interesting opposite behavior than expected. Moreover, 3D plotting indicated trends by emotion, and CART models showed that emotion solutions across runs were predictable to quite high degree, with duration appearing most indicative for prediction.

6. Acknowledgements

Many thanks to C. Shih, R. Proano, D. Goldberg, and R. Sprat for valuable comments. The work was funded by NSF ITR-40205731, the Air Force Office of Scientific Research, Air Force Materiel Command, USAF, under FA9550-06-1-0096, and the NSF under IIS-02-09199. Opinions, findings, conclusions or recommendations expressed are those of the authors and do not necessarily reflect the views of the funding agencies.

7. References

