Modelling Aspiration Noise During Phonation Using the LF Voice Source Model

Christer Gobl
Phonetics and Speech Laboratory, School of Linguistic, Speech and Communication Sciences, Trinity College Dublin, Ireland
cegobl@tcd.ie

Abstract
This paper presents a technique for modelling the aspiration noise produced during phonation. The method employs the widely used LF voice source model, which is here extended to include a turbulence noise source for the generation of aspiration. Drawing on speech production theory and on empirical data, the overall amplitude level as well as the within-pulse modulation of the noise are determined by the specific shape of the LF model waveform. The main advantage of this approach is that it simplifies the control of the glottal source, as the temporal dynamics of the variation in noise level need not be explicitly set, but is generated automatically. Informal listening tests also suggest that the proposed modelling technique may contribute to the naturalness of synthesised speech, particularly with regard to breathy voicing.

Index Terms: aspiration noise, glottal, voice source, LF model

1. Introduction
Many of the parameters used in the modelling of speech acoustics are interrelated and do not vary independently. The main objective of the present research is to explore the relationship between glottal pulse characteristics and the turbulence noise component during phonation, and to formulate a model by which the noise component can be predicted from voice source parameters.

To analyse the glottal source, source-filter decomposition based on inverse filtering is often used, e.g. [1]. Such analysis mainly provides data on the quasi-periodic voice source, but little or no information about the aspiration noise. Being able to model the noise component on the basis of voice source data would enhance the analysis as well as simplifying the resynthesis of the parameterised speech signal. It may also contribute to the naturalness of synthetic speech, particularly for voice qualities involving significant audible aspiration noise, such as breathy voice and whispery voice.

One of the most comprehensive and widely used formant synthesizers is the Klatt synthesiser, KLSYN88 [2]. It has a large number of control parameters facilitating very detailed modelling of the speech output. When the parameters are appropriately set, very high naturalness can be achieved. However, the large number of parameters can make it difficult to control. As there are few constraints amongst the parameters, great care is required to avoid the risk of an unnatural output.

The HLsyn synthesiser [3] provides a smaller number of 'high-level' quasi-articulatory parameters, and from these, the settings are automatically generated for the 'low-level' acoustic parameters of KLSYN88. Thus, the HLsyn parameters simplify the control, as they impose natural constraints on the KLSYN88

2. Theoretical framework
The main theoretical framework for this modelling is Fant’s source-filter theory of speech production [5], which considers the speech signal as the response of the vocal tract filter to one or more sound sources. During phonation, the source is regarded as a volume velocity source, and we shall here define the voice source as the airflow through the glottis, \(U_g(t) \). This signal excites the natural modes of the vocal tract, producing oral airflow at the lips. The radiated sound pressure is approximately proportional to a differentiation of the oral airflow signal. Therefore, the differentiated glottal flow (glottal flow derivative) relates more closely to the radiated sound pressure, and is often used when modelling the voice source.

For the noise modelling we rely on Stevens’ detailed theoretical account of turbulence noise generation in speech, as outlined in [6], and on experimental data from [7] and [8].

Considering the glottal resistance, but ignoring the viscous losses, we can derive the following approximation for how the glottal airflow \(U_g \) depends on the glottal area \(A_g \) and the transglottal pressure drop \(P_{tg} \)

\[
U_g(t) = \sqrt{\frac{2 P_{tg}}{\rho} \cdot A_g(t)}
\]

(1)

Assuming a constant transglottal pressure drop, it suggests that glottal flow and glottal area are proportional. Obviously, Eq. 1 does not consider the effects of the supraglottal and subglottal load or the glottal inductance, but for the modelling developed here we shall make use of this approximation.

Turbulence noise produced in the glottis or in the vicinity of the glottis is known as aspiration noise. Most of the noise is produced above the glottis at the ventricular folds and along the surface of the epiglottis, and this noise can be treated as a sound pressure source. Noise produced within the glottis is considerably weaker and can be modelled as a volume velocity source [6].

The amplitude spectrum of a turbulence noise source is thought to be essentially flat, with levels falling at low and high

\[
10.21437/Interspeech.2006-310
\]
frequencies [5, 6, 9]. The spectrum may also depend on the glottal area, and how this can be modelled is discussed in [9].

The noise intensity can be assumed to be proportional to the cross-sectional area of the constriction, i.e. \(A_t \), in the case of aspiration noise. This is based on the fact that, all else being equal, the intensity of the source is proportional to the area over which turbulence is produced, and this area is in turn directly determined by the size of the jet, which is given by the constriction area [6]. As pressure is proportional to the square root of intensity, the radiated sound pressure of the aspiration noise source is assumed to be approximately proportional to the square root of the glottal area. Empirical data and modelling experiments [10, 11] have supported this relationship, although Rothenberg’s data [12] point to a more complex relationship.

If we assume proportionality between glottal flow and glottal area as in Eq. 1, it follows that the strength of the noise source is also approximately proportional to the square root of the glottal airflow.

However, according to Eq. 1, the flow also depends on the transglottal pressure. The intensity of a noise source produced in speech has been reported to vary in proportion to the sixth power of the flow, e.g., [6, 9]. Thus, the radiated sound pressure of the aspiration noise to be reflected in the glottal pulse characteristics of the pulse by taking some of the covariation into account. A similar parameter has been proposed by Alku et al. [17], the ‘normalized amplitude quotient’ NAQ, but in the present modelling we shall be using the \(R_d \) parameter.

Note that the \(R_d \) parameter is based on the declination time of the glottal pulse [18], \(T_d = U_p / E_e \), where \(U_p \) is the peak glottal flow (see Fig. 1 and Eq. 2 – note that \(T_d \) is here expressed in seconds), normalised to the fundamental period.

\[
R_d = 1000 \frac{U_p}{f_0} E_e \frac{1}{110} = \frac{1}{0.11} \frac{T_d}{T_0} \quad (2)
\]

To capitalise on this natural correlation between the typical LF parameters, Fant [16] has proposed a global pulse-shape parameter \(R_e \). This parameter captures some of the main characteristics of the pulse by taking some of the covariation into account. A similar parameter has been proposed by Alku et al. [17], the ‘normalized amplitude quotient’ NAQ, but in the present modelling we shall be using the \(R_d \) parameter.

As indicated by Eqs. 3 and 4 and Fig. 1, the model has two parts: the open phase, \(T_o = t_e - t_c \), and the return phase, \(T_r = t_f - t_e \). The open phase is defined by a sinusoidal function that in-

3. Voice source modelling

Acoustic modelling of the human voice source often involves a parametric model with the capability of capturing salient characteristics of the glottal flow pulse. One such model is the well-established LF model [13], which is typically defined in terms of differentiated glottal flow, but can equally well be used to model the true glottal flow. Fig. 1 shows two LF model pulses, both for flow (top) and flow derivative (bottom).

Except for the voice fundamental frequency \(f_0 \), there are no ‘standard’ parameters for describing the voice source. However, in addition to \(f_0 \), two to three parameters are normally used to describe the pulse shape, and one amplitude parameter is used to define the strength of the glottal excitation.

The typical set of parameters used with the LF model for describing the source would be \(f_0, R_e, R_t, R_o, \) and \(E_e \). \(R_d = T_d / T_0 \), \(R_t = T_t / (2T_0) \) and \(R_o = T_o / T_0 \) describe the pulse shape, and \(E_e \) is the excitation strength, defined by the maximum discontinuity in the flow waveform (see Fig. 1). For the generation of the LF model waveform (see further Section 3.1 below), the parameters are converted into the necessary parameters of the model, as described in detail in [14].

Data on how these voice source parameters vary in running speech show a high level of interconnection: thus, systematic covariation of values for different parameters is often observed, e.g., [8, 15, 16].

To capitalise on this natural correlation between the typical LF parameters, Fant [16] has proposed a global pulse-shape parameter \(R_e \). This parameter captures some of the main characteristics of the pulse by taking some of the covariation into account. A similar parameter has been proposed by Alku et al. [17], the ‘normalized amplitude quotient’ NAQ, but in the present modelling we shall be using the \(R_d \) parameter.

Note that the \(R_d \) parameter is based on the declination time of the glottal pulse [18], \(T_d = U_p / E_e \), where \(U_p \) is the peak glottal flow (see Fig. 1 and Eq. 2 – note that \(T_d \) is here expressed in seconds), normalised to the fundamental period.

\[
R_d = 1000 \frac{U_p}{f_0} E_e \frac{1}{110} = \frac{1}{0.11} \frac{T_d}{T_0} \quad (2)
\]

3.1. The LF model

The LF model [13] is a parametric voice source model, which is often referred to as a four-parameter model. Apart from \(f_0 \), four parameters define the pulse: three parameters for the pulse shape and one for the amplitude of the pulse.

To generate the LF waveform, we also need to set one further ‘parameter’. The model requires the size of the positive area of the differentiated flow pulse to be the same as the size of the negative area. In other words, the area over the whole duration of an LF pulse should be zero. This ensures that the maximally closed phase of the glottal flow pulses is not offset with respect to the zero-flow line. This ‘area balance’ is implicitly set on the basis of the values of the other parameters.

As indicated by Eqs. 3 and 4 and Fig. 1, the model has two parts: the open phase, \(T_o = t_e - t_c \), and the return phase, \(T_r = t_f - t_e \). The open phase is defined by a sinusoidal function that in-
creases exponentially in amplitude from glottal opening to the main excitation, where the amplitude reaches the value \(-E_e\) (Eq. 3). The frequency of the sine function is \(f = \alpha_0/(2\pi)\) and the rate of the amplitude increase is determined by \(\alpha\). \(E_0\) is a scale factor that is used to achieve area-balance.

\[
E(t) = U_p(t) = E_0 e^{\alpha t} \sin \alpha_0 t \quad \text{for} \quad t_o \leq t \leq t_p
\] (3)

The return phase is defined by an exponential function, as shown in Eq. 4. Note that the time point \(t_e\) coincides with the time point of the glottal opening of the following pulse: thus, the exponential function returns asymptotically not to zero, but to a specific positive value, so that zero is reached at time point \(t_e\). The main parameter of the return phase is \(T_e\), which measures the ‘effective’ duration of the return phase. As can be seen in Fig. 1, \(T_e\) is the duration from \(t_e\) to the point where a tangent, fitted at the starting point of the return phase, crosses the zero line.

\[
E(t) = -\frac{E_e}{T_e} \left(e^{\epsilon \left(t - t_e \right)} - e^{-\epsilon T_e} \right) \quad \text{for} \quad t_e < t < t_e
\] (4)

The time-constant of the exponential function of the return phase is \(\epsilon^{-1}\), which can be determined iteratively from \(T_e\) and \(T_p\), using the following equation

\[
\epsilon = \frac{1}{T_e} \left(1 - e^{-\epsilon T_e} \right)
\] (5)

The LF model can also be expressed in terms of glottal airflow (upper part of Fig. 1). The glottal flow for the two parts respectively is given by Eqs. 6 and 7.

\[
U_g(t) = \frac{E_0 e^{\alpha t} \sin \left(\alpha_0 t - \arctan \frac{\alpha_0}{\alpha} \right)}{\sqrt{\alpha^2 + \alpha_0^2}} + \frac{E_0 \alpha_0}{\alpha^2 + \alpha_0^2}
\] (6)

\[
U_p(t) = \frac{E_p}{T_p T_o} e^{-\epsilon \left(t - t_e \right)} + \epsilon e^{-\epsilon T_e} \left(1 - \left(\frac{t_e + 1}{\epsilon} \right) \right)
\] (7)

As indicated earlier, the LF model pulse can be uniquely determined by six parameters, e.g., \(\alpha, \alpha_0, E_e, T_e, T_p\) and \(T_o\) (where \(T_e = t_e - t_o\), see Fig. 1). Apart from these six parameters, \(E_o\) and \(\epsilon\) also need to be computed in order to generate the LF pulse: \(\epsilon\) is determined by \(T_e\) and \(T_p\), and \(E_0\) is calculated iteratively together with \(\alpha\) to achieve area-balance.

4. Extending the LF model to incorporate aspiration noise

White Gaussian noise was used as the basic aspiration noise source. The amplitude spectrum is essentially flat, and no spectral shaping was included in the current simulations, for reasons of simplicity.

For the noise modulation, the theoretical framework elaborated in Section 2 is used: as the airflow changes during the course of the glottal cycle, the noise amplitude should vary in proportion to the square root of the glottal flow.

In terms of the LF model, the flow is given by Eqs. 6 and 7. However, we also need to take the dc flow \(U_{dc}\) into account, as there is typically some amount of glottal leakage during the so-called closed phase [7]. Generally, we do not have access to the level of dc flow. Neither do we know the precise relationship between the ac and dc components of the flow. As the turbulence noise level and modulation are determined by the overall rate of glottal flow, we clearly need to obtain this information. We shall here attempt to estimate \(U_{dc}\) as well as \(U_{ac}\) from the voice source parameters.

We also need to obtain the pulse amplitude of the LF pulse: by evaluating Eq. 5 for \(t = T_p\), we can derive Eq. 8 for the peak flow value \(U_p\) of the LF model pulse.

\[
U_p = \frac{E_0 \alpha_0}{\alpha^2 + \alpha_0^2} \left(e^{\epsilon t_0/\alpha} + 1 \right)
\] (8)

As the \(U_p\) value is scaled differently from \(U_{ac}\), it is necessary to scale the waveform of the LF model pulse by a factor of \(U_{ac}/U_p\), so that flow values match.

To scale the noise with regard to the transglottal pressure drop \(P_{tg}\) is particularly important at voice termination. If the transglottal pressure is assumed to be constant, this tends to result in an artificially high level of noise prior to voice termination, followed by an unnaturally abrupt cessation of the noise source.

To derive a value proportional to \(P_{tg}\) on the basis of the LF parameters, we use the empirical relationships between sub-glottal pressure \(P_o\), \(E_e\) and \(f_0\) found for speech data having \(f_0\) values in the low to mid frequency range [8]. Given a constant \(f_0\), \(E_e\) was found to be proportional to \(P_o^{-1.1}\), which also means that \(P_{tg}\) is proportional to \(E_e^{1.1}\). Given a constant \(E_e\), \(P_{tg}\) was found to be proportional to \(f_0^{0.7}\). Thus, we shall assume \(P_{tg}\) to be proportional to \(E_e^{1.1} f_0^{0.7}\).

As discussed in Section 2, we need to scale the noise source by a factor proportional to \(P_{tg}^{1.1}\). If we replace \(P_o\) with \(P_{tg}\), we get the following relationship: \(P_{tg}^{1.1} \sim E_e^{1.1} f_0^{0.7}\).

Given \(U_{ac}\), \(U_p\), \(U_{dc}\), \(E_e\) and \(f_0\), the modulated aspiration noise source \(S_{AH}(n)\) is calculated as follows:

\[
S_{AH}(n) = E_e^{1.35} f_0^{1.05} \sqrt{\frac{U_{ac}}{U_p}} U_p(n) + U_{dc} \times AH \cdot rand(n)
\] (9)

where \(rand(n)\) is the random number generator producing white Gaussian noise, \(AH\) is a parameter controlling the overall strength of the white noise, and \(U_p(n)\) is the sampled version of the LF flow waveform (Eqs. 6 and 7).

As noted earlier, \(K_2\) and \(T_d\) are voice source parameters that can capture many of the essential characteristics of the glottal pulse, and they are used here to estimate \(U_{dc}\) and \(U_{ac}\). To predict \(U_{ac}\), we use the absolute value of the decimation time \(T_{dc}\), which is likely to be more suitable than the \(f_0\)-normalised \(R_2\) value, as we would expect \(U_{ac}\) to decrease as a function of increasing \(f_0\).

Based on data from [7] for 25 male and 20 female speakers producing vowels with ‘normal’, ‘loud’ and ‘soft’ voice, correlation analysis was carried out for the parameters shown in Table 1. The results suggest a high correlation for \(U_{ac}\) and \(T_d\) \((r = 0.92)\), and linear regression analysis provides the following relationship for predicting \(U_{ac}\)
For the estimation of U_{ac}, we use the f_0-normalised R_d value, as it shows a high correlation with U_{ac}. The inverse of R_d is used for the regression analysis: U_p has been shown to vary with the square root of E_p [16], and one might therefore expect a linear relationship between U_{ac} and $1/R_d$. The relationship between U_{ac} and the inverse of $R_d (r = 0.91)$ is as follows:

$$U_{ac} = \frac{379}{R_d} - 91 = 42 \frac{E_p}{U_p} T_0 - 91 \quad (11)$$

Note that U_{ac} is updated for every pulse, but U_p/U_p should be calculated only once, as U_p/U_p is simply used to rescale the LF pulses. Note also that the correlation analysis relates to vowel steady-states: the square root relationship between U_p and E_p is often not valid for voice onsets and offsets. Therefore, U_p/U_p is here obtained from R_d values from the first steady state vowel, by calculating the mean value for four consecutive pulses.

Table 1. Mean values taken from [7]. Note that female data for 'soft voice' were not available.

<table>
<thead>
<tr>
<th></th>
<th>Loud (male)</th>
<th>Normal (male)</th>
<th>Soft (male)</th>
<th>Loud (female)</th>
<th>Normal (female)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_p</td>
<td>380</td>
<td>110</td>
<td>120</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>U_e</td>
<td>300</td>
<td>152</td>
<td>152</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>T_0</td>
<td>481.1</td>
<td>134.15</td>
<td>248.9</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>F_0</td>
<td>279.6</td>
<td>111.1</td>
<td>111.1</td>
<td>111.1</td>
<td></td>
</tr>
<tr>
<td>T_d</td>
<td>0.1</td>
<td>0.009</td>
<td>0.009</td>
<td>0.020</td>
<td>0.020</td>
</tr>
<tr>
<td>R_d</td>
<td>0.008</td>
<td>0.093</td>
<td>0.144</td>
<td>0.072</td>
<td>0.85</td>
</tr>
</tbody>
</table>

5. Summary and conclusions

A modelling technique is formulated for the generation of aspiration noise during phonation: the noise level is automatically controlled and is modulated as a function of the LF model glottal pulse. The principles for the modelling draw on acoustic theory as well as on experimental data, and should help to simplify the analysis and synthesis of the glottal source in running speech. Informal listening tests further suggest that it may contribute to a more natural sounding synthesis of breathy voicing. Currently, more formal perception tests are being elaborated to establish its perceptual effects.

Note that the empirical expressions for estimating U_p and U_e are only based on the mean values from five categories of data. Further data analysis should help to refine the predictions, by including perhaps also information from other voice source parameters such as R_e, R_p, etc. This is likely to be crucial for better estimates during voice onset and offset.

An envisaged future direction will be to explore, and to contrast with the current modelling, how aspiration noise would be modulated to be consistent with the findings presented by Rothenberg [12]. The effects on the noise due to variation in the spectral shape of the noise, according to suggestions in [9], are also to be considered.

6. References