Automatic Speech Recognition with a Cochlear Implant Front-End

Waldo Nogueira¹, Tamás Harczos², Bernd Edler¹, Jörn Ostermann², Andreas Büchner⁴

¹Information Technology Laboratory, Leibniz Universität Hannover, Germany
²Fraunhofer Institute for Digital Media Technology, Ilmenau, Germany
³Institut für Informationsverarbeitung, Leibniz Universität Hannover, Germany
⁴Hannover Hörforschung, Medizinische Hochschule Hannover, Germany

Abstract

Today, cochlear implants (CIs) are the treatment of choice in patients with profound hearing loss. However speech intelligibility with these devices is still limited. A factor that determines hearing performance is the processing method used in CIs. Therefore, research is focused on designing different speech processing methods. The evaluation of these strategies is subject to variability as it is usually performed with cochlear implant recipients. Hence, an objective method for the evaluation would give more robustness compared to the tests performed with CI patients.

This paper proposes a method to evaluate signal processing strategies for CIs based on a hidden markov model speech recognizer. Two signal processing strategies for CIs, the Advanced Combinational Encoder (ACE) and the Psychoacoustic Advanced Combinational Encoder (PACE), have been compared in a phoneme recognition task. Results show that PACE obtained higher recognition scores than ACE as found with CI recipients.

Index Terms: cochlear implant, speech recognition, HMM

1. Introduction

Cochlear implants significantly improve the auditory receptive abilities of people with profound hearing loss [1]. These devices consist of a microphone, a speech processor, a transmitter, a receiver and an electrode array which is positioned inside the cochlea. The electrode array carries a number of electrode contacts that can emit small electrical currents to evoke neural action potentials on the auditory nerve.

Speech processing strategies for cochlear implants determine the excitation patterns within the cochlea and subsequently have a strong influence on speech perception. Therefore research is focused on designing new advanced speech processing methods. In general, the speech processor decomposes the audio signal into different frequency bands and delivers a stimulation pattern to the implanted electrode determined by the speech processing strategy. The two main speech processing concepts are the CIS (Continuous Interleaved Sampling) and NoM strategies. NoM strategies such as Advanced Combinational Encoder (ACE) [3], separate speech signals into M sub-bands and derive envelope information from each band signal. N bands with the largest amplitude are then selected for stimulation NoM (N out of M) in each time window. CIS could be considered as a special case of NoM with N=M, meaning that all bands are being selected for stimulation regardless of their envelope information.

Based on the general structure of the ACE strategy but incorporating a psychoacoustic masking model, a new approach has been designed in order to select the N bands in NoM strategies. The idea behind that was to neglect information that is inaudible to normal hearing persons and to concentrate only on the signal components that are perceived by the normal hearing auditory system. It was anticipated to achieve improved speech recognition with the PACE strategy compared to the simple NoM type maxima selection of the ACE strategy. The new strategy was termed Psychoacoustic Advanced Combinational Encoder (PACE). The PACE strategy was evaluated in a pilot study conducted with eight cochlear implant recipients. Speech intelligibility tests, comparing the ACE and the PACE strategy, showed a superior speech performance for the PACE [2], [3]. However, these results are generally subject to inter- and intra-subject variability. Results obtained from an objective method to measure speech intelligibility with both strategies would give more robustness to the study mentioned before.

Automatic speech recognition systems based on neural networks and hidden markov models have been used to evaluate speech processors for cochlear implants [4], [5]. This paper also proposes a hidden markov model speech recognizer in order to compare the ACE and the PACE strategies. The speech recognizer uses as input the stimulation patterns obtained from a cochlear implant processor.

Section 2 presents the cochlear implant front-end. Section 3 outlines the structure of the hidden markov model speech recognizer. In Section 4 the methods for testing both signal processing strategies are given. Finally, Section 5 shows the results obtained and Section 6 gives some conclusions.

2. The Cochlear Implant Front-End

Figure 1 presents the block diagram of the cochlear implant front-end. A speech signal is processed using a cochlear implant strategy. The output of this stage are electrical amplitudes. Afterwards a simple model of current spread has been used to estimate the stimulation pattern produced in the cochlea. The following subsections present each stage of the cochlear implant front-end in more detail.
2.1. Signal Processing Strategy

The signal processing algorithms implemented are the ACE and the PACE.

Both ACE (Figure 2) and PACE (Figure 3) are NofM-type strategies that can both be used with the Nucleus implant [2]. In these strategies a digital signal sampled at 16 kHz is sent through a filterbank. The filterbank is implemented with an FFT (Fast Fourier Transform). The block update rate of the FFT is adapted to the rate of stimulation on a channel i.e. the Channel Stimulation Rate (CSR). The FFT is performed on windowed input blocks of L=128 samples (8 ms at 16 kHz) of the audio signal using Hann window.

The uniformly-spaced L-FFT bins are combined to require the number of frequency bands by summing their powers. The bandwidths of these bands are approximately equal to the critical bands, where low-frequency bands have higher frequency resolution than high-frequency bands. The envelope in each spectral band \(a(z)\) is obtained as follows. The real part of the jth FFT bin is denoted with \(x(j)\), and the imaginary part \(y(j)\). The power of the bin is

\[
r^2(j) = x^2(j) + y^2(j), \quad j = 0, ..., L - 1.
\]

The power of the envelope of a frequency band \(z\) is calculated as a weighted sum of FFT bin powers

\[
a^2(z) = \sum_{j=0}^{L/2} g_z(j) r^2(j), \quad z = 1, ..., M,
\]

where \(g_z(j)\) are gains. The exact value of these gains can be obtained from [3]. The envelope of the frequency band \(z\) is \(a(z)\).

In the ACE “sampling and selection” block, the subset of \(N\) \((N < M)\) filter bank envelopes \(a(z)\) with the largest amplitude are selected for stimulation.

In the PACE “sampling and selection” block, a psychoacoustic-masking model is used to select the \(N\) bands. Consequently, the bands selected by this approach are not necessarily those with largest amplitudes (as is the case in the ACE strategy) but the ones that are, in terms of hearing perception, most important to the auditory system of normal-hearing people. The psychoacoustic masking model is configured by a so-called spreading function. This function models the masking effect of each band upon the others. The spreading function (Figure 4) is defined using three parameters, the attenuation parameter \(a_v\), the left slope \(s_l\) and the right slope \(s_r\). In [3], speech tests with CI recipients were performed using two different spreading functions. These two configurations were termed PACE1 and PACE2, and they differed in the steepness of the mentioned function. The PACE2 used a steeper function than the PACE1. More information on these two configurations of PACE can be found in [3].

Finally, the “mapping block” determines the current level based on the envelope magnitude and the channel characteristics associated with each band. This is done by using the Loudness Growth Function (LGF), which is a logarithmically-shaped function that maps the acoustic envelope amplitude \(a(z_i)\) to an electrical magnitude.

\[
p(z_i) = \begin{cases} \log (1+\rho^2 a(z_i)) \quad & s \leq a(z_i) \leq m \\ 0 \quad & a(z_i) < s \\ 1 \quad & a(z_i) \geq m. \end{cases}
\]

The magnitude \(p(z_i)\) is a fraction in the range 0 to 1 that represents the proportion of the output range (from the Threshold \(T\) to the Comfort level \(C\)). An input at the base-level \(s\) is mapped to an output at Threshold level, and no output is produced for an input of lower amplitude. The parameter \(m\) is the input level at which the output saturates; inputs at this level or above result in stimuli at Comfort level. The parameter \(\rho\) controls the steepness of the LGF [2].

Finally, the channels \(z_i\) are stimulated with levels:

\[
l_i = T + (C - T)p_i.
\]

The set of \(l_i\) \((i = 1, ..., N)\) form the frame sequence. A frame is generated at a rate defined by the channel stimulation rate. This parameter is fixed for each patient and its typical value is around 1000 Hz. for all channels.

2.2. Current Spread Model

A simple model of current spread was used to estimate the electrical excitation along the auditory nerve with a cochlear implant. The current density was modeled with an exponential decay function in \(K\) sections along the cochlea.

\[
E_m(k) = e^{-\frac{X_elec(m) - X(k)}{\lambda}}, \quad m = 1...M, \quad k = 1...K.
\]

\(X(k)\) represents the position in [mm] along the cochlea for the section \(k\). \(X_elec(m)\) is the position along the cochlea for the electrode \(m\) and \(\lambda\) represents the degree of current spread.

The number of sections \(K\) was set to 211. The sections were chosen to be spaced 0.1 Bark from 5 Hz to 8 kHz, this resolution was chosen to obtain the same number of sections as used by other auditory models known from the literature [8]. By selecting the same number of sections in both models, a direct
Figure 5 presents the stimulation patterns of a speech token coinciding with the two first formants of the token ‘a’. These formants can be seen that with ACE the two formants have been smeared across the frequency. However, with PACE the formants can still be recognized.

3. Automatic Speech Recognition with a Cochlear Implant Front-End

As explained in previous sections, feature vectors of dimension $K (K=211)$ are obtained at a rate determined by CSR. As described earlier, a typical value for the CSR is 1000 Hz. Therefore, the dimensionality of these data was reduced in order to make it more suitable for speech recognition with a Hidden-Markov-Model (HMM). For each section, the stimulation pattern was integrated every 10 ms. Afterwards, to further reduce the number of spectral features, a DCT was applied and the first 12 cepstral coefficients were stored. Finally, the feature vector was augmented by adding first- and second- order temporal derivatives. A similar dimensionality reduction was used in [6].

3.1. Interfacing to the speech recognizer

The interface between the cochlear implant front-end and the speech recognizer in detail.

3.2. Hidden Markov Model Speech Recognizer

The recognition system was built with Cambridge’s HTK Toolkit [10]. The experiments were performed using the TIMIT core database [11]. This database contains 192 sentences from 24 speakers. 576 sentences were used for training and 192 sentences were used for testing. The test set was not included in the training. The recognizer used a five-state HMM for each phoneme. Each state was modeled by a Gaussian mixture. We did not use any kind of grammar, bi-gram or triphone model. Recognition of phonemes was therefore completely based on the actual feature vectors. The HMM was trained and tested using the same front-end. Using Mel-frequency cepstral coefficient (MFCC) features, the system obtained 64.00% on phoneme recognition rate using the TIMIT core database.

4. Methods

The experiments consisted of comparing ACE and PACE strategies in a phoneme recognition task for different conditions. The different testing conditions were determined by varying the parameter N (number of selected bands N from the total number of filter bank bands M) in both signal processing strategies. All other parameters of the presented system were kept fixed.

The total number of bands M was set to 20, the CSR was set to 1000 Hz and the values that define the LGF function were set.
to \(\rho=20\), \(s=4/256\) and \(m=150/256\). These values are the standard values used by most of the users of the Nucleus-24 cochlear implant device [2]. \(C\) and \(T\) were set to 200 and 100. Finally, \(\lambda\) was set to 1 mm.

The PACE strategy was configured using two different spreading functions termed PACE1 and PACE2 as explained in Section 2.1. The same front-end was used for training and testing.

5. Results

Figure 7 presents the recognition scores obtained by the automatic speech recognizer using ACE, PACE1 and PACE2 respectively.

For \(N=1\) only one band is selected and for this condition there are no processing differences between ACE and PACE. Subsequently, the same scores were obtained in this condition. The same is true for \(N=20\) where all the bands are selected in both ACE and PACE. Maximum performance is achieved by the PACE2 strategy, with \(N=4\). Interestingly, PACE stimulating only 4 channels per cycle achieves better performance than ACE stimulating 20 channels per cycle.

These results are consistent with speech intelligibility tests obtained with cochlear implant patients at our center. Patient trials showed that PACE2 with \(N=4\) performs better than ACE with \(N=8\) [3].

6. Conclusions

This paper has presented an automatic speech recognizer that uses stimulation patterns coming from a cochlear implant front-end. The goal of the system was to obtain an objective measure to determine which signal processing strategy performs better in terms of speech intelligibility for cochlear implant patients. Using such an objective measure it is possible to increase the reliability of results obtained from cochlear implant patients directly.

In a pilot experiment with the TIMIT core database two NoM signal processing strategies for cochlear implants were compared for different settings. This experiment has shown that the PACE strategy achieves better recognition performance than the ACE strategy even with PACE stimulating less bands per stimulation cycle compared to ACE. The maximum phoneme recognition score using PACE was 44.18\% stimulating only 4 channels per stimulation cycle. The maximum score obtained by ACE was 43.01\% and it was necessary to stimulate 12 channels per stimulation cycle. This experiment was consistent with speech intelligibility results obtained with cochlear implant recipients. As PACE can achieve at least the same results as ACE, but with significantly lower stimuli per cycle, the new strategy saves power and can lead to the design of smaller devices with smaller batteries.

The speech recognition system proposed is comparable to existing models of the normal hearing auditory system. Auditory models together with HMM back-ends have shown to obtain at least similar recognition scores to that of mel-frequency-coefficients (MFCCs) based hidden markov model speech recognizers [6]. Therefore, it is anticipated that an auditory model representing the limitations of hearing with cochlear implants performs worse than the models representing a fully functioning auditory system. On our long way to closer mimic the neural excitation patterns within the cochlea and the ever increasing complexity of speech coding strategies, the approach of evaluating speech processing algorithms with the help of auditory models will gain more and more importance in the future.

7. References