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Abstract
To precisely model the time dependency of features,

segmental unit input HMM with a dimensionality reduction
method has been widely used for speech recognition. Linear
discriminant analysis (LDA) and heteroscedastic discriminant
analysis (HDA) are popular approaches to reduce the dimen-
sionality. We have proposed another dimensionality reduction
method called power linear discriminant analysis (PLDA) to se-
lect the best dimensionality reduction method that yields the
highest recognition performance. This selection process on the
basis of trial and error requires much time to train HMMs and
to test the recognition performance for each dimensionality re-
duction method.

In this paper we propose a performance comparison method
without training or testing. We show that the proposed method
using the Chernoff bound can rapidly and accurately evaluate
the relative recognition performance.
Index Terms: speech recognitoin, feature extraction, multidi-
mensional signal processing

1. Introduction
Although Hidden Markov Models (HMMs) have been widely
used to model speech signals for speech recognition, they can-
not precisely model the time dependency of feature sequences.
In order to overcome this limitation, many extensions have
been proposed [1–3]. Segmental unit input HMM [1] has been
widely used for its effectiveness and tractability. In segmental
unit input HMM, a feature vector is derived from several suc-
cessive frames the immediate use of which inevitably increases
the dimension of the parameters. Therefore, a dimensionality
reduction method is performed to spliced frames.

Linear discriminant analysis (LDA) [4,5] and heteroscedas-
tic discriminant analysis (HDA) [6,7] are used for this purpose.
In addition, we have proposed a new framework which we call
power linear discriminant analysis (PLDA) [8], which can de-
scribe various criteria including LDA and HDA with one control
parameter. The effectiveness of these methods has been experi-
mentally shown. Unfortunately, we cannot know which method
is the most effective before training HMMs and testing the per-
formances of all dimensionality reduction methods on the eval-
uation set. In general, this training and testing process requires
more than several dozen hours. Moreover, the computational
time is proportional to the number of dimensionality reduction
methods. PLDA, especially, requires considerable time to com-
pare several conditions because its control parameter can be set
to a real number.

In this paper, we propose a performance comparison
method without training of HMMs and test on an evaluation set.

To evaluate the relative performance among a number of meth-
ods, we focus on a class separability error of projected features
and measure it on evaluation data. We show that the proposed
method can rapidly and accurately compare with the relative
recognition performance.

The paper is organized as follows: Segmental unit input
HMM with dimensionality reduction method is reviewed in
Section 2. Then, a comparison method of the relative recog-
nition performance is proposed in Section 3. Experimental re-
sults are presented in Section 4. Finally, conclusions are given
in Section 5.

2. Segmental unit input HMM
For an input symbol sequence o = (o1,o2, · · · ,oT ) and a state
sequence q = (q1, q2, · · · , qT ), the output probability of seg-
mental unit input HMM is given by the following equations [1]:

P (o1, · · · ,oT )

=
X

q

Y

i

P (oi | o1, · · · ,oi−1, q1, · · · , qi)

× P (qi | q1, · · · , qi−1) (1)

≈
X

q

Y

i

P
`

oi | oi−(d−1), · · · ,oi−1, qi

´

P (qi | qi−1)

(2)

≈
X

q

Y

i

P
`

oi−(d−1), · · · ,oi | qi

´

P (qi | qi−1) , (3)

where T denotes the length of input sequence and d the number
of successive frames. The immediate use of several successive
frames as an input vector inevitably increases the dimension of
parameters. Then, PCA, LDA, HDA, or PLDA were used to
reduce dimensionality [1, 3, 7, 8].

2.1. Linear discriminant analysis

Given n-dimensional features xj ∈ Rn(j = 1, 2, . . . , N), e.g.,
xj =

ˆ

oT
j−(d−1), · · · ,oT

j

˜T
, let us find a transformation matrix

B ∈ Rn×p that maps these features to p-dimensional features
zj ∈ Rp (j = 1, 2, . . . , N) (p < n), where zj = BT xj , and
N denotes the number of features.

In LDA, to obtain an optimal projection matrix B, the ob-
jective function is defined as follows:
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where Σb denotes a between-class covariance matrix, Σk the
covariance matrix in the class k, Pk the class weight, and c the
number of classes, respectively. LDA finds a projection matrix
B that maximizes Eq. (4).

2.2. Heteroscedastic discriminant analysis

In HDA [7], the objective function is defined as follows:

JHDA (B) =
c
Y

k=1

 

˛

˛BT ΣbB
˛

˛

|BT ΣkB|

!Nk

, (5)

where Nk denotes the number of features labeled as class k.
The solution to maximize Eq. (5) is not analytically obtained.
Therefore, its maximization is performed using a numerical op-
timization technique.

2.3. Power linear discriminant analysis

We have proposed the following objective function which inte-
grates LDA and HDA [8]:

JPLDA (B, m) =
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where m denotes a control parameter. We have referred to it as
Power Linear Discriminant Analysis (PLDA). Intuitively, as m
becomes larger, the classes with larger variances become dom-
inant in the denominator of Eq. (6). Conversely, as m becomes
smaller, the classes with smaller variances become dominant.
Thus, by varying the control parameter m, the proposed objec-
tive function can represent various objective functions. Some
typical objective functions are enumerated below.
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where Σ̃b = BT ΣbB and Σ̃k = BT ΣkB. To maximize the
PLDA objective function with respect to B, we can use some
numerical optimization methods, such as the quasi-Newton
method and conjugate gradient method [9].

2.4. Problem in selection of optimal dimensionality reduc-
tion method

As shown above, several methods to reduce dimensionality have
been proposed, and their effectiveness has been experimentally
demonstrated. Unfortunately, we cannot know which method is
the most effective before training HMMs and testing the perfor-
mances of all dimensionality reduction methods on the evalu-
ation set. In general, this training and testing process requires
more than several dozen hours. Moreover, the computational
time is proportional to the number of dimensionality reduction
methods. PLDA, especially, requires much time to compare a
number of conditions because it is able to choose a control pa-
rameter within a real number.

3. Performance comparison method
In this section we focus on a class separability error of the fea-
tures in the projected space instead of using a recognition error.
Better recognition performance can be obtained under the lower
class separability error of projected features. Consequently, we
measure the class separability error and use it as a criterion for
the recognition performance comparison. We will define a class
separability error of projected features.

3.1. Two-class problem

This subsection focuses on the two-class case. We first consider
the Bayes error of the projected features on an evaluation data
as a class separability error:

ε =

Z

min[P1p1(x), P2p2(x)]dx, (7)

where Pi denotes a prior probability of the class i and pi(x) is
a conditional density function of the class i. The Bayes error
ε can represent a classification error, assuming that the training
data and the evaluation data come from the same distributions.
However, it is difficult to directly measure the Bayes error. In-
stead, we use the Chernoff bound between class 1 and class 2 as
a class separability error [4]:

ε1,2
u = P s

1 P 1−s
2

Z

ps
1(x)p1−s

2 (x)dx for 0 ≤ s ≤ 1 (8)

where εu indicates an upper bound of ε. In addition, when the
pi(x)’s are normal with expected vectors —i and covariance
matrices Σi, the Chernoff bound between class 1 and class 2
becomes

ε1,2
u = P s

1 P 1−s
2 exp(−η1,2(s)), (9)

where

η1,2(s) =
s(1 − s)

2
(—2 − —1)

T (sΣ1 + (1 − s)Σ2)
−1 (—2 − —1)

+
1

2
ln

|sΣ1 + (1 − s)Σ2|
|Σ1|s |Σ2|1−s . (10)

In this case, εu can be obtained analytically and calculated
rapidly.

In Figure 1, two-dimensional two-class data are projected
onto a one-dimensional subspace by two methods. To compare
with their Chernoff bounds, the lower class separability error is
obtained from the projected features by Method 1 as compared
with those by Method 2. In this case, Method 1 preserving the
lower class separability error should be selected.

3.2. Extension to multi-class problem

In the previous subsection, we defined a class separability error
for two-class data. Here, we extend a two-class case to a multi-
class case. Unlike the two-class case, it is possible to define
several error functions for multi-class data. We define an error
function as follows:

ε̃u =
c
X

i=1

c
X

j=1

I(i, j)εi,j
u (11)

where I(·) denotes an indicator function. We consider the fol-
lowing three formulations as an indicator function.
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Figure 1: Examples of dimensionality reduction.

3.2.1. Sum of pairwise approximated errors

The sum of all the pairwise Chernoff bounds is defined using
the following indicator function:

I(i, j) =

(

1, if j > i,

0, otherwise.
(12)

3.2.2. Maximum pairwise approximated error

The maximum pairwise Chernoff bound is defined using the fol-
lowing indicator function:

I(i, j) =

(

1, if j > i and (i, j) = (̂i, ĵ),

0, otherwise,
(13)

where (̂i, ĵ) ≡ arg max
i,j

εi,j
u .

3.2.3. Sum of maximum approximated errors in each class

The sum of the maximum pairwise Chernoff bounds in each
class is defined using the following indicator function:

I(i, j) =

(

1, if j = ĵi,

0, otherwise,
(14)

where ĵi ≡ arg max
j

εi,j
u .

4. Experiments
To evaluate the effectiveness of the comparison method of the
relative recognition performance, we first conducted the exper-
iments using the CENSREC-3 database [10]. The CENSREC-
3 is designed as an evaluation framework of Japanese isolated
word recognition in real driving car environments. Speech
data were collected using 2 microphones, a close-talking (CT)
microphone and a hands-free (HF) microphone. For train-
ing, driver’s speech of phonetically-balanced sentences was
recorded under two conditions: while idling and driving on a
city street with normal in-car environment. A total of 14,050
utterances spoken by 293 drivers (202 males and 91 females)
were recorded with both microphones. We used all utterances
recorded with CT and HF microphones for training. For evalu-
ation, driver’s speech of isolated words was recorded under 16
environmental conditions using combinations of three kinds of
vehicle speeds and six kinds of in-car environments. We only

used three kinds of vehicle speeds in normal in-car environment
for evaluation. A total of 2,646 utterances spoken by 18 speak-
ers (8 males and 10 females) were evaluated for each micro-
phone. The speech signals for training and evaluation were both
sampled at 16 kHz.

4.1. Baseline system

In the CENSREC-3, the baseline scripts are designed to facil-
itate HMM training and evaluation by HTK [11]. The acous-
tic models consisted of triphone HMMs. Each HMM had five
states and three of them had output distributions. Each distri-
bution was represented with 32 mixture diagonal Gaussians.
The total number of states with the distributions were 2,000.
The feature vector consisted of 12 MFCCs and log-energy with
their corresponding delta and acceleration coefficients (39 di-
mensions). Frame length was 20 ms and frame shift was 10
ms. In the Mel-filter bank analysis, a cut-off was applied to fre-
quency components lower than 250 Hz. The decoding process
was performed without any language model. The vocabulary
size of the CENSREC-3 was 50 words. Another fifty similar-
sounding words were added to the vocabulary for the experi-
ments.

4.2. Dimensionality reduction procedure

The dimensionality reduction was performed using PCA, LDA,
HDA, DHDA [7], and PLDA for the spliced features. Eleven
successive frames (143 dimensions) were reduced to 39 dimen-
sions. In (D)HDA and PLDA, to optimize Eq. (6), we assumed
that projected covariance matrices were diagonal and used the
limited-memory BFGS algorithm as a numerical optimization
technique [9]. The LDA transformation matrix was used for the
initial gradient. To assign one of the classes to every feature af-
ter dimensionality reduction, HMM state labels were generated
for the training data by a state-level forced alignment algorithm
using a well-trained HMM system. The class number was 43
corresponding to the number of the monophones.

4.3. Experimental results

Tables 1 and 2 show the word error rates and class separabil-
ity errors according to Eqs. (12)-(14) for each dimensionality
reduction method. The evaluation sets used in Tables 1 and 2
were recorded with CT and HF microphones, respectively. For
the evaluation data recorded with a CT microphone, Table 1
shows that PLDA with m = −0.5 yields the lowest WER. For
the evaluation data recorded with a HF microphone, the lowest
WER is obtained by PLDA with a different control parameter
(m = −1.5) in Table 2.

In comparing dimensionality reduction methods, we used
s = 1/2 for the Chernoff bound computation. In the case of
s = 1/2, Eq. (8) is called the Bhattacharyya bound. Two co-
variance matrices in Eq. (10) were treated as diagonal because
diagonal Gaussians were used to model HMMs. Both Tables
1 and 2 show that the results of the proposed method and rel-
ative recognition performance agree well. Eqs. (13) and (14)
yield slightly better agreement of the recognition performance
than Eq. (12). However, no comparison method among Eqs.
(12)-(14) could predict the best dimensionality reduction meth-
ods simultaneously for both of the two evaluation sets. It is
supposed that this results from neglecting time information of
speech feature sequences to measure a class separability error
and modeling a class distribution as a unimodal normal distri-
bution.
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Table 1: Word error rates (%) and class separability errors ac-
cording to Eqs. (12)-(14) for the evaluation set with CT micro-
phone. The best results are highlighted in bold.

Method WER Eq. (12) Eq. (13) Eq. (14)
MFCC + ∆ +∆∆ 7.45 2.31 0.0322 0.575
PCA 10.58 3.36 0.0354 0.669
LDA 8.78 3.10 0.0354 0.641
HDA 7.94 2.99 0.0361 0.635
PLDA (m = −3) 6.73 2.02 0.0319 0.531
PLDA (m = −2) 7.29 2.07 0.0316 0.532
PLDA (m = −1.5) 6.27 1.97 0.0307 0.523
PLDA (m = −1) 6.92 1.99 0.0301 0.521
PLDA (m = −0.5) 6.12 2.01 0.0292 0.525
DHDA (PLDA m=0) 7.41 2.15 0.0296 0.541
PLDA (m = 0.5) 7.29 2.41 0.0306 0.560
PLDA (m = 1) 9.33 3.09 0.0354 0.641
PLDA (m = 1.5) 8.96 4.61 0.0394 0.742
PLDA (m = 2) 8.58 4.65 0.0404 0.745
PLDA (m = 3) 9.41 4.73 0.0413 0.756

Table 2: Word error rates (%) and class separability errors ac-
cording to Eqs. (12)-(14) for the evaluation set with HF micro-
phone. The best results are highlighted in bold.

Method WER Eq. (12) Eq. (13) Eq. (14)
MFCC + ∆ +∆∆ 15.04 2.56 0.0356 0.648
PCA 19.39 3.65 0.0377 0.738
LDA 15.80 3.38 0.0370 0.711
HDA 17.16 3.21 0.0371 0.697
PLDA (m = −3) 15.04 2.19 0.0338 0.600
PLDA (m = −2) 12.32 2.26 0.0339 0.602
PLDA (m = −1.5) 10.70 2.18 0.0332 0.5921
PLDA (m = −1) 11.49 2.23 0.0327 0.5922
PLDA (m = −0.5) 12.51 2.31 0.0329 0.598
DHDA (PLDA m=0) 14.17 2.50 0.0331 0.619
PLDA (m = 0.5) 13.53 2.81 0.0341 0.644
PLDA (m = 1) 16.97 3.38 0.0370 0.711
PLDA (m = 1.5) 17.31 5.13 0.0403 0.828
PLDA (m = 2) 15.91 5.22 0.0412 0.835
PLDA (m = 3) 16.36 5.36 0.0424 0.850

4.4. Computational costs

The computational costs for the evaluation of recognition per-
formance versus the proposed comparison method is shown in
Table 3, for which the experiment is done with a Pentium IV
2.8 GHz computer. For every dimensionality reduction method,
the evaluation of recognition performance required 15 hours for
training of HMMs and 5 hours for testing on an evaluation set.
In total, 300 hours were needed for comparing 15 dimensional-
ity reduction methods (MFCC+∆+∆∆, PCA, LDA, HDA, and
PLDAs using 11 different control parameters). On the other
hand, the proposed comparison method required approximately
30 minutes for calculating statistical values such as mean vec-
tors and covariance matrices of each class in the original space.
After this, 2 minutes were needed to calculate Eqs. (12)-(14) for
each dimensionality reduction method. In total, only one hour
was needed for predicting the optimal method among the 15
dimensionality reduction methods described above. Thus, the
proposed method could perform the prediction process up to 2
orders faster than a conventional method that included training
of HMMs and test on an evaluation set.

Table 3: Computational costs with the conventional and pro-
posed method.

conventional proposed
300 hours 1 hour

5. Conclusions
In this paper we proposed a new method to compare dimen-
sionality reduction methods and to select the best one. The pro-
posed method used the Chernoff bound as a measure of a class
separability error which was an upper bound of the Bayes error.
Experimental results showed that the proposed method could
evaluate the relative recognition performance without training
of HMMs and test on an evaluation set. In addition, the pro-
posed method yielded accurate performance comparison with a
drastic reduction of computational costs.
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