Comparing text-driven and speech-driven visual speech synthesisers

Barry-John Theobald1, Gavin Cawley1, Andrew Bangham1, Iain Matthews2 and Nicholas Wilkinson1

1School of Computing Sciences, University of East Anglia, Norwich, UK.
2Weta Digital Limited, Wellington, New Zealand
(bjt,gcc,ab}@cmp.uea.ac.uk, iainm@wetafx.co.nz, nw@cmp.uea.ac.uk

Abstract

We present a comparison of a text-driven and a speech driven visual speech synthesiser. Both are trained using the same data and both use the same Active Appearance Model (AAM) to encode and re-synthesise visual speech. Objective quality, measured using correlation, suggests the performance of both approaches is close, but subjective opinion ranks the text-driven approach significantly higher.

Index Terms: visual speech synthesis

1. Introduction

Visual speech synthesisers can be broadly categorised as speech-driven or text-driven — see [1, 2] for an overview. We compare both approaches using the same underlying model for synthesis. In particular, the text-driven system from [3] is compared with a speech-driven approach that maps Mel-frequency cepstral coefficients (MFCCs) to AAM parameters using an Artificial Neural Network (ANN). AAMs are adopted in our synthesisers as they encode the changes in both the shape and appearance of the face in a few tens of parameters, and can later re-synthesise near-photorealistic images of the face from those parameters — see [4] for a description of AAMs.

1.1. Text-Driven Synthesis

To synthesise visual speech from text, the similarity between phoneme pairs in terms of AAM parameters is computed using:

$$ S_{ij} = \exp\left(\sum_{m=1}^{l} \sum_{n=1}^{l} \sum_{i} \left(v_i p_{mn} - v_j p_{mn} \right)^2 \right). \tag{1} $$

P^i and P^j are representations of phonemes i and j computed from examples in the corpus, the first summation is over the dimensions of the AAM and the second over samples equally spaced over the phoneme sub-trajectories. The parameters v_i are inversely proportional to the variance of the i^{th} phoneme, and w_m reflects the significance of the m^{th} AAM parameter. The similarities obtained with this measure match intuitive expectation. For example, {/b/, /p/, /m/}, {/f/, /v/}, {/t/, /d/, /s/, /z/}, etc., are most similar to one another.

Synthesised sequences are generated by measuring the distance between a desired context and the contexts in which a phoneme appears in the training corpus using:

$$ \delta_j = \sum_{i=1}^{C} \frac{S_{ij}}{i+1} + \sum_{i=1}^{C} \frac{S_{ri}}{i+1}. \tag{2} $$

where C is the context width and S_{ij} and S_{ri} are the similarity between the left and right contexts respectively. The selected sub-trajectories for the best examples are temporally normalised to the desired duration, concatenated, smoothed and applied to the model.

1.2. Speech-Driven Synthesis

The acoustic speech in the training corpus is encoded as MFCCs at 10ms intervals and the AAM parameters are up-sampled from 25Hz to 100Hz to match the audio. At each time-step, five frames either side of each AAM feature vector are concatenated to provide temporal context. A three-layer ANN with a 50-node hidden layer is used to learn the mapping from MFCCs to AAM parameters and a network is trained for each sentence in the corpus. This leave-one-out methodology matches those used in the text-driven synthesis.

2. Results

One hundred sentences not included in training were synthesised using both systems and the correlation between ground-truth and synthesised parameters for the first three parameters of the AAM are shown in Table 1. Viewers’ ratings (on a five-point Likert scale) for sequences presented in a random order show the text-driven output is significantly preferred ($p < 0.02$).

Table 1: Mean correlation ($\pm \sigma$) between original and synthesised parameters for a test set of 100 held-out sentences.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Text</th>
<th>Speech</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shape 1</td>
<td>0.81±0.04</td>
<td>0.79±0.08</td>
</tr>
<tr>
<td>Shape 2</td>
<td>0.80±0.08</td>
<td>0.77±0.08</td>
</tr>
<tr>
<td>Shape 3</td>
<td>0.64±0.15</td>
<td>0.68±0.15</td>
</tr>
<tr>
<td>Appearance 1</td>
<td>0.62±0.16</td>
<td>0.75±0.11</td>
</tr>
<tr>
<td>Appearance 2</td>
<td>0.83±0.08</td>
<td>0.79±0.09</td>
</tr>
<tr>
<td>Appearance 3</td>
<td>0.76±0.10</td>
<td>0.77±0.10</td>
</tr>
</tbody>
</table>

3. Acknowledgements

The authors gratefully acknowledge the support of EPSRC (EP/D049075/1) for funding.

4. References

