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Abstract
In previous work [1], we presented several implementations of
acoustic anomaly detection by training a model on purely nor-
mal data and estimating the divergence between it and other
input. Here, we reformulate the problem in an unsupervised
framework and allow for anomalous contamination of the train-
ing data. We focus exclusively on methods employing Gaussian
mixture models (GMMs) since they are often used in speech
processing systems. After analyzing what caused the Kullback-
Leibler (KL) divergence between GMMs to break down in the
face of training contamination, we came up with a promising
solution. By trimming one quarter of the most divergent Gaus-
sians from the mixture model, we significantly outperformed
the untrimmed approximation for contamination levels of 10%
and above, reducing the equal error rate from 33.8% to 6.4% at
33% contamination. The performance of the trimmed KL di-
vergence showed no significant dependence on the investigated
contamination levels.
Index Terms: anomaly detection, speech activity detection,
unsupervised learning, Kullback-Leibler divergence.

1. Introduction
One important aspect of human intelligence that speech pro-
cessing systems often lack is the ability to recognize the un-
known. State-of-the-art speaker, language, and word recog-
nition systems perform quite well when the training data and
test data are similar. Large corpora of speech labeled for such
systems have been carefully constructed to simulate real-world
problems. However, the data is often homogeneous with re-
spect to noise and channel conditions and it is usually culled
of any gross anomalies deemed irrelevant to the task at hand.
In the interest of robust speech processing, our goal was to de-
velop an anomaly detector to supplement existing classifiers by
recognizing novel data that should be processed differently or
flagged for review.
Supervised machine learning algorithms predict an output

y ∈ Y for each input x ∈ X using a set of manually labeled
training data {(x1, y1), . . . , (xn, yn)}. In a binary classifica-
tion context we can define Y = {0, 1} and use examples from
both classes to develop a generative model p(x, y) or a discim-
inative classifier p(y|x).
If we label each normal example with y = 0 and each

anomaly with y = 1, anomaly detection falls naturally into this
binary classification framework. Research on the detection of
outliers and anomalies has been conducted in other fields such
as network intrusion detection [2] and fraud detection [3]. In
Hodge and Austin’s survey of the subject [4], they categorized

the research into three methods: those that required labeled ex-
amples of both classes, those that learned from only normal
data, and those that were completely unsupervised. A subset of
the unsupervised methods used a strategy of accommodation,
incorporating some outliers into the model and using a robust
classification method to detect them later on.

The term “robustness” was first coined in the field of statis-
tics by Box when he noted the insensitivity to non-normality for
tests of equal means [5]. Robust statistics provide alternatives
to classical statistical methods without being severely impacted
by outliers or inaccurate assumptions. For robust estimates of
central tendency, Tukey [6] and others proposed the trimmed
and Winsorized means, which remove a fraction of the small-
est and largest samples and either discard them or replace them
with the maximal remaining values. Shortly thereafter, Huber
observed that classical estimators were not robust due to their
inherent normality assumptions and reliance on least squares
estimation [7] . He developed a general theory of robust statis-
tics and showed the mean, median, and maximum likelihood
(ML) estimates all to be special cases of M-estimators that min-
imize some function of the error between the samples and the
estimator.

In order to quantify robustness, Hampel defined the “break-
down point” of an estimator to be the smallest amount of con-
tamination that can cause it to take on “arbitrarily large aberrant
values” [8]. The mean is not robust with breakdown point 0
since a single outlier can arbitrarily effect the estimate, whereas
the α-trimmed mean is robust with breakdown point α, and
the median with breakdown point 1

2
. In this work, we sought

to use robust statistics to make our previous GMM approaches
to anomaly detection less dependent on purely normal training
data.

2. Data
2.1. Syllable Rate Features

One challenge in speech processing is dealing with a large quan-
tity of data. While many speech tasks use spectral features com-
puted every 10 ms resulting in approximately 50 dimensions,
we used two features from a syllable rate speech activity de-
tector (SRSAD) [9] computed every 100 ms. Since speech has
a syllable rate of approximately 5 Hz, the frequency of its en-
velope modulation is different from that of white noise. Us-
ing a sliding half-second window of audio, SRSAD computes
both the expected value of this modulation frequency and an
estimate of its power. We modeled the distribution of this two-
dimensional sequence as a set of independent observations.
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2.2. Anomalous Data

We developed a set of synthetic anomalies known to be prob-
lematic to SRSAD, such as tones and noises of short duration
and certain kinds of muzak [10]. The anomalous set was com-
prised of 50 examples of each of the following: DTMF se-
quences, Morse code, MIDI tones, MIDI songs, and various
telephony noises. Using varying tone lengths from 25 ms to
1.25 seconds and a set of always-on MIDI tones centered at
frequencies from 10 Hz to 300 Hz, Audacity [11] plug-in ef-
fects were used to generate random DTMF and Morse code se-
quences. The MIDI songs were downloaded from the MIDI
Database [12] and telephony noises (busy signal, modem, etc)
were obtained from FindSounds [13]. Since some of these
noises were of short duration, the audio was cycled prior to fea-
ture generation until each was at least 5 minutes long. Half
of the examples of each anomaly type were randomly selected
for testing and the other half were reserved for possible use as
training contamination.

2.3. Normal Data

The CallHome English corpus [14] of unscripted conversational
speech between family and friends was selected to represent
normal audio. Each conversation side in the train set was di-
vided into 5 minute segments and 250 were randomly resam-
pled from the total 918 to create ten training sets. This enabled
us to estimate the variance in performance and allowed for up
to 33% contamination when using all 125 anomalous segments.
The English eval set was similarly divided into 5 minute seg-
ments yielding 226 for testing. We performed all our testing on
contiguous 30 second segments, which were randomly selected
from each 5 minute segment at test time.

3. Mostly Normal Model
We began by building a GMM to characterize the training data
that we assumed to be mostly normal. We experimented with
GMMs using up to 16 components with full covariance matri-
ces.

The probability of an input x ∈ Rd for a single Gaussian is

N (x;μ; Σ) =
exp

“
− 1

2
(x− μ)T Σ−1 (x− μ)

”
(2π)d/2 |Σ|1/2

(1)

with mean vector μ and covariance matrix Σ. Several of these
are combined to form a mixture ofm Gaussians,

p(x|θ) =
mX
i=1

wi · N (x;μi; Σi) (2)

each with its own mean μi, covariance matrix Σi, and weight
wi, such that wi > 0 for i = 1, . . . , m and Σm

i=0wi = 1.
Unlabeled data often comes at a low cost, so we were not

concerned with using all of it. Whenever training the mostly
normal model (MNM), we randomly assigned 66% of the data
to an initial set, keeping the remainder in a heldout set. Training
GMMs using the Expectation-Maximization (EM) algorithm
can be a delicate process and we wanted to avoid local max-
ima and overfitting to the training data. To deal with the former
we trained eight separate initial models. Each initial model was
initialized using k-means clustering on 1000 samples randomly
chosen without replacement from the initial set. After a maxi-
mum of 10 iterations of k-means clustering, we performed ML

estimation using the EM algorithm until the parameters con-
verged. The initial model with the highest log likelihood for the
heldout set was then selected. Using this model and all of the
data in the initial set, we continued to perform EM iterations
while the log likelihood of the heldout set increased to ensure
that the model would generalize.

4. Methods
4.1. Average Log Likelihood Baseline

We first present a baseline anomaly detector using the av-
erage log likelihood of an input sequence. Here, X =
{xn+1, . . . , xn+t} was labeled as anomalous if

1

t

n+tX
i=n+1

log p(xi|θ) < λ, (3)

where the threshold λ was set so that the false alarm rate was
equal to the miss rate. This equal error rate (EER) allowed us to
summarize detection performance with a single number.

4.2. Distributional Anomaly Detection

The distribution of syllabic rate features is noticeably different
between anomalies and normal audio [1]. To obtain a model
of a test sequence, we initialized the parameters to those of the
MNM and performed ML estimation using the EM algorithm
on the test data. While it is common to use MAP adaptation
in such a scenario, we felt that deriving prior probabilities for
the parameters using mostly normal data could not be justified
when adapting to data that might be severely anomalous.

The comparison of two distributions p(x) and q(x) is often
done using the Kullback-Leibler (KL) divergence [15],

KL (p‖q) =
Z

p(x) log
p(x)

q(x)
dx. (4)

We used the MNM for p(x) and the test segment model for
q(x), which was found to perform better than the alternative.

4.2.1. KL Divergence Approximation for GMMs

For single Gaussians, p(x) = N (x;μp; Σp) and q(x) =
N (x;μq ; Σq), the KL divergence can be computed directly
[16],

KLG (p‖q) =
1

2
log

 
|Σp|
|Σq |

+ Tr|Σ−1
p Σq | − d

+(μp − μq)
T Σ−1

q (μp − μq)

!
. (5)

However, there is no such closed form expression between two
GMMs. We used the approximation suggested by Goldberger
et al. [17],

dKLGMM (p‖q) =
mX
i=1

wp,i

 
KLG

`
pi‖qπ(i)

´
+ log

wp,i

wq,π(i)

!
(6)

and substituted our own trivial mapping function π(i) = i,
since our adaptation strategy resulted in a correspondence be-
tween the Gaussians of each mixture model.

2556



(a) (b)

Figure 1: GMM ML adaptation from the MNM (dashed blue)
with 33% training contamination to (a) CallHome English cut
4829 side A (solid green) and (b) a random sequence of DTMF
tones keyed on and off every 700 ms (solid red). The four
most divergent Gaussians that would be trimmed are shown
with thicker lines.

4.2.2. Trimming Gaussians for Robustness

With sufficient contamination some Gaussians in the MNM
would inevitably model anomalous regions of the feature space.
When adapting to normal data, changes in these Gaussians
could lead to false alarms. With labelled training data we could
have estimated which Gaussians were modeling anomalous data
and then discarded them before estimating the KL divergence.
In our unsupervised setting we did not have such labels, and our
aim was to exploit the mostly normal data by discarding a frac-
tion of the most divergent Gaussians. Our approach begins by
treating the summands of Equation 6,

di = wp,i

„
KLG

`
pi‖qπ(i)

´
+ log

wp,i

wq,π(i)

«
(7)

as samples of a random variable D whose location we want to
estimate robustly. We do so by discarding α of the largest di’s
using the one-sided trimmed mean,

dKLα-trimmed (p‖q) = m

 
1

m− k

m−kX
j=1

d(j)

!
(8)

with d(j) denoting the order statistics and k = �αm�. We
also tried the more traditional two-sided trimmed mean [18],
but found it did not perform as well. We attributed this to the
lack of negative outliers in the right-skewed distribution ofD.
An example of the adaptation from the MNM to a normal

segment is shown in Figure 1(a). A change in a few of the Gaus-
sians lead to a divergence of 20.9 using Equation 6. Adaptation
from the same MNM to an anomaly is shown in Figure 1(b).
The resulting divergence was only 2.9 despite more of the Gaus-
sians being affected by the adaptation. After discarding the four
most divergent Gaussians (shown with thicker lines) in an un-
supervised manner, the normal and anomalous segments had
trimmed KL divergences of 0.2 and 1.3, respectively.

5. Experimental Results
5.1. Training Data Contamination

The aim of this work was to relax our previous assumption that
a large amount of purely normal data was available for train-
ing. Obtaining data that is mostly normal is relatively inexpen-
sive since it does not require any annotation. We investigated if
any methods could robustly model the normal data, even when
it was partially contaminated with anomalies. Figure 2 shows
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Figure 2: Box and spline plots of anomaly detection EER at
various contamination levels using 16 Gaussians. The dotted
lines around the splines indicate 95% confidence levels.

the EER for each of the investigated methods using mixtures
of 16 Gaussians as contamination levels were varied from 0%
to 33% in approximate increments of 3 1

3
%. To examine the

relationship between performance and contamination, we first
performed linear regression and then fit natural cubic splines to
assess the linearity. Model selection for the splines was per-
formed using the Bayes information criterion (BIC) [19].

Linear regression for the log likelihood method suggested
that error rate increased with the amount of contamination
(EER% = 22 + 0.87 per contamination percent, r2 = 0.87, P <
0.001). However, spline fitting suggested that the relationship
was slightly nonlinear (df = 2, P < 0.001). For purely
normal training data, the KL divergence achieved the lowest
EER (5.8%) with a median absolute deviation (MAD) of 1.3%.
The difference between its performance and the 1

4
-trimmed

KL divergence (6.3% EER, 0.9% MAD) was not significant
(P = 0.44) using a Wilcoxon paired-sample signed rank test.

For contaminated training data, trimming one quarter of
the Gaussians resulted in significantly better performance, with
one exception at 6.7% contamination (P = 0.19). The vari-
ability of performance for the untrimmed KL divergence was
not well accounted for with a linear model (EER% = 9.5 +
0.70 per contamination percent, r2 = 0.32, P < 0.001), but
the BIC suggested that higher order splines offered no better
fit. The performance of the 1

4
-trimmed KL divergence did not

show a significant dependence on the amount of contamination
(P = 0.53) and a constant model resulted in a better fit (EER%
= 7.6, P < 0.001). The median EER for all methods includ-
ing 1

2
-trimming KL divergence are shown in Table 1 for select

contamination levels.

5.2. Model Selection

We also evaluated the performance of each method as we varied
the number of Gaussians from 1 to 16 when training on 33%
contaminated data (Figure 3). Spline fitting suggested that all
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Figure 3: Box and spline plots of anomaly detection EER for
various model complexities when training with 33% anoma-
lous contamination. The dotted lines around the splines indicate
95% confidence intervals.

relationships were nonlinear, with three degrees of freedom for
both the log likelihood method and KL divergence and four de-
grees of freedom for the 1

4
-trimmed KL divergence. The log

likelihood method achieved its lowest EER of 28.8% (1.2%
MAD) using a single Gaussian, although this was not consistent
for other contamination levels. The KL divergence achieved
its lowest EER of 7.7% (1.5% MAD) using 6 Gaussians. Both
methods showed a dependence on model complexity that would
require careful optimization for any new data set. In contrast,
trimming one quarter of the Gaussians resulted in robust per-
formance over a wide range of model complexities (6.4% EER,
1.0% MAD for 16 Gaussians). This performance was signifi-
cantly better than the untrimmed KL divergence with a compa-
rable model complexity (P < 0.001), but not when compared
to the untrimmed divergence using 6 Gaussians (P = 0.053).

6. Conclusion
Using only unlabeled data, our goal was to develop a robust
acoustic anomaly detector using two syllable rate features from
a speech activity detector. When trained on purely normal data,
we found that the KL divergence achieved the lowest EER of
the three methods. When subjected to training contamination,
the performance of the KL divergence suffered dramatically and
optimizing its model complexity became extremely important.
Seeing the merit in this approach, we wanted to improve its
robustness to contamination.
After trimming one quarter of the most divergent Gaussians

we found that the effect of contamination up to 33% was not sig-
nificant. We experimented with other trimming ratios, but one
quarter had the most consistent performance regardless of con-
tamination level and model complexity. Such a detector could
work in tandem with other speech processors, enabling the over-
all system to have a means of detecting anomalous audio at little
additional cost.

Table 1: Percent Equal Error Rate (Median with n=10)

Contamination 0% 3.5% 10% 20% 33%

4
G
au
ss
. likelihood 19.2 22.4 22.8 24.4 44.8dKLGMM 4.8 8.8 10.1 12.0 22.3dKL1/4-trim 4.6 7.2 8.4 15.8 16.4dKL1/2-trim 5.9 11.8 15.1 27.1 24.8

8
G
au
ss
. likelihood 20.0 24.0 29.6 38.8 45.6dKLGMM 4.4 5.2 5.6 6.9 7.2dKL1/4-trim 4.4 4.2 5.9 6.8 8.6dKL1/2-trim 6.8 8.4 9.2 10.8 13.0

1
6
G
au
ss
. likelihood 18.4 26.0 31.2 42.5 48.5dKLGMM 5.5 12.2 10.8 29.6 33.8dKL1/4-trim 6.3 5.8 6.2 7.6 6.4dKL1/2-trim 11.6 12.8 12.2 12.4 11.2
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