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Abstract
This paper presents initial developments towards computational
hearing models that move beyond stationary microphone as-
sumptions. We present a particle filtering based system for
using localisation cues to track speaker changes in meeting
recordings. Recording are made using in-ear binaural micro-
phones worn by a listener whose head is constantly moving.
Tracking speaker changes requires simultaneously inferring the
perceiver’s head orientation, as any change in relative spatial
angle to a source can be caused by either the source moving or
the microphones moving. In real applications, such as robotics,
there may be access to external estimates of the perceiver’s po-
sition. We investigate the effect of simulating varying degrees
of measurement noise in an external perceiver position estimate.
We show that only limited self-position knowledge is needed to
greatly improve the reliability with which we can decode the
acoustic localisation cues in the meeting scenario.
Index Terms: speaker change tracking, binaural hearing, parti-
cle filtering, active listening

1. Introduction
There have been many previous attempts to model the auditory
system’s ability to localise and track sound sources. Previous
models have attempted to account for the robustness of sound
localisation in the presence of additive and convolutive noise
(see [1] for a review). However, most of these previous systems
employ a stationary binaural microphone set up and hence over-
look one of the auditory system’s more remarkable abilities: the
ability to track moving sources using sensors (i.e. ears) that are
themselves rarely stationary.
The emergence of mobile hearing applications, such as per-

ceptual robotics and wearable listening devices, lends urgency
to the development of computational hearing models that can
move beyond stationary microphone assumptions. In this pa-
per we make initial steps towards such models. In particular
we consider the additional complexity that microphone motion
introduces to a problem that has been well studied from a sta-
tionary microphone perspective – the problem of using direction
cues to track speaker changes in a meeting. We reconsider this
problem from the perspective of a meeting participant making
natural head movements.
Allowing the acoustic sensors to move, significantly in-

creases the difficulty of the sound source tracking problem.
First, the quasi-stationary assumptions that are used in window-
based extraction of source location cues (i.e., interaural time
and level differences) are not compatible with rapid head ro-
tations. Note, head rotation can approach speeds of up to 500
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degrees/sec, equivalent to 5 degrees per 10 ms analysis window.
Rapid rotation thus results in significant ‘motion blurring’ of lo-
cation estimates. Second, head motion introduces extra ambigu-
ity [2]. If a single source is dominating the acoustic scene, then
a clockwise head movement may be hard to distinguish from a
movement of the source in an anticlockwise direction around
the head, and vice versa. In real systems this second problem
may be countered by complementary sensory input from other
modalities. In the current study we assume we have access to
a (more or less) noisy estimate of the true head position such
as might be available to biological systems from proprioceptive
feedback.
The paper presents a general solution for tracking sources

from a moving perceiver which operates by simultaneously
modelling and tracking changes in the state of both the external
environment and the perceiver. Section 2 presents both the gen-
eral framework, and the particular speaker turn-taking scenario
on which we have evaluated our systems. Section 3 describes
our specific tracking implementation based on particle filtering.
Results and conclusions follow in Sections 4 and 5.

2. The sound source tracking problem
2.1. The general approach

The general approach to the tracking problem can be described
as follows: We assume that we observe the acoustic mixtures
arriving at a pair of microphones set in a binaural configura-
tion. The microphones are fixed to a head that can in general
move with 6 degrees of freedom (translation and rotation). The
environment contains a number of potentially moving sound
sources which may also switch between being active or inac-
tive. The perceiver and sound source position parameters can
be described by a state space that evolves over time. We are
particularly interested in inferring the sound source position pa-
rameters, but may also wish to infer the perceiver’s position and
orientation.
In order to proceed we will extract standard localisation

cues — in the current work we have concentrated on modelling
interaural time differences (ITDs). We then employ two sta-
tistical models: i) a measurement model that describes the dis-
tribution of the ITD observations for a given set of perceiver
and source position parameters; and ii) a system model that cap-
tures how the perceiver and source parameters evolve over time.
With access to these models we can treat the problem using re-
cursive Bayesian estimation, which in our case we implement
using particle filtering [3].

2.2. The turn-taking meeting scenario

For this initial work we have concentrated on a constrained
case of the general tracking problem: tracking speaker turns
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in a meeting scenario. Data from the CAVA database has been
employed [4]. This data was recorded from the perspective of
a moving, human head and in a conversational situation with
five speakers. The purpose of the CAVA corpus is to enable
the investigation of binaural and stereoscopic cues from a hu-
mans’ perspective in various environments. This was achieved
by equipping the ‘perceiver’ (either a human or a dummy head)
with a pair of binaural in-ear microphones. The perceiver was
also wearing a helmet on which a pair of stereoscopic cameras
were mounted (in this work the visual data stream was not used)
and finally, on top of the helmet a 6 degree of freedom head
tracking device was fitted so that the true head position and ori-
entation is known. The head tracker information can be used to
verify our algorithms, and it also provides a means of simulating
potential position feedback information.
We have focused on a particular session from the CAVA

database – Panel Meeting 1 (P1). Here the human perceiver
and 5 ‘actors’ are sitting around a table. Actors are separated
by roughly 25◦ measured from the perceiver (see Figure 1).
The perceiver is blind folded and the actors take turns to speak
(counting from 1-5). Perceiver head movements have been in-
duced by giving the perceiver the task of monitoring speaker
changes and turning to face the current speaker. The task for
our system will be to use ITD cues in the binaural recording to
estimate which of the speakers is active at any instant.

2.3. Modelling the turn-taking meeting scenario

The meeting scenario is suitable for this initial study because
it allows us to considerably reduce the complexity of the gen-
eral model described in Section 2.1. We will model the scenario
with three main assumptions: i) that there are a fixed and known
number of speakers seated at fixed, known positions and mak-
ing only small scale movements around this position, ii) that the
perceiver’s head movement is mainly head rotation in the hori-
zontal plane, i.e. from −90 to +90◦ azimuths, and iii) that one
and only one person is speaking at a time.
Given the above assumptions, the CAVA meeting scenario

can be described by a relatively simple state space. From the
acoustic signal we are extracting localisation cues that indicate
θO the spatial angle of a sound source relative to the rotational
angle of the perceiver’s head. This perceived angle is the differ-
ence between the absolute angle of the perceiver’s head, θH (i.e.
the angle relative to a fixed room axis) and the absolute spatial
angle of the active sound source θScur (see Figure 1). It is these
underlying angles, θH and θScur, that we wish to track in order
to recover a full description of the scenario.
We model the situation with a state space

α
�
= (θH , θS1 , . . . θ

S
K , cur), (1)

where θH is the absolute spatial angle (azimuth) of the head,
θSk is the absolute azimuth of speaker k, K is the total number
of speakers, and cur ∈ {1, . . . ,K}, indicates which speaker is
speaking.
This model allows for a fully dynamic setup, where the per-

ceiver’s head can be turning, and where each sound source can
be moving around independently. Following our assumptions,
θSk will be constrained to vary within a small range of a known

initial position, θS
′

k .

3. Particle filtering
The task of tracking the azimuth of a set of sound sources lends
itself to sequential, recursive filtering approaches where a new
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Figure 1: Illustration of the definition of θ–parameters for P1.

Bayesian estimate of the state is inferred for each time step by
combining the previous estimate with what can be learnt from
the incoming set of observations (see [3] for a tutorial). Parti-
cle filtering methods attempt to construct a posterior probability
density function (pdf) of the state based on all available obser-
vations as well as other prior information such as what might be
known about the dynamicity of the targets. We will present an
overview of a particle filtering formulation suitable for the case
of tracking multiple sound sources from the point of view of an
active perceiver. This can be seen as an extension of Vermaak
and Blake’s formulation of the case for a static perceiver [5].

3.1. Observations

The ITD-based observations are extracted from an auditory
front-end simulating the cochlear frequency analysis of the hu-
man ear. The model is implemented using a filterbank consist-
ing of 64 overlapping bandpass gammatone filters, with cen-
tre frequencies spaced uniformly on the equivalent rectangular
bandwidth (ERB) scale between 50Hz and 8000Hz. The output
of the filterbank is used to generate cross-correlograms on lags
corresponding to the range −90◦ to +90◦ azimuths. The stan-
dard procedure of estimating ITDs is to identify one or more
peaks in the summed cross-correlogram (e.g. Jeffress’ model
[6]), however, the data are often very noisy and spurious peaks
may arise due to reverberation in the room or competing sound
sources.

Figure 2 illustrates what the summed cross-correlogram
looks like for parts of the P1 CAVA session. The underlying
‘track’ of ITDs was plotted above the image. The sweeps aris-
ing from when the perceiver is turning his head towards a new
speaker are clear. However, it is also evident that the data is
challenging and that the largest peak in each frame would not
always capture the active speaker location. We have therefore
chosen to extract the lags corresponding to the three largest
peaks for each frame; this has proven to be a good compro-
mise between ensuring that a high probability of the true ITD is
being observed and that not too much noise is included in the
data.

3.2. System model

The system model determines how the state represented by each
particle is progressed at each time step: αt → αt+1, i.e. a
head angle model (θHt → θHt+1) and a speaker change model
(θSk,t → θSk,t+1, curt → curt+1).

The system model assumes very small, i.i.d. Gaussian dis-
tributed changes in head angle from frame to frame

θHt+1 ∼ θHt +N (0, σ2
H), (2)

with σH = 1◦, determined empirically.
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Figure 2: Illustration of summed cross-correlogram for 2000
frames of the P1 CAVA session. The underlying ITD ‘track’ has
been manually drawn above.

The speaker changes controlled by cur are modelled by
a two-state model with a probability q of continuing with the
same speaker and a probability (1 − q) of changing speakers.
The propagated θSk,t+1 will be drawn from a Gaussian distribu-
tion

θSk,t+1 ∼ N (θS
′

k , σ2
S) (3)

where θS
′

k and σS are the known mean position and standard
deviation of the speaker. Parameters were estimated from data
as q = 0.9953, σS = 2.

3.3. Measurement model

The measurement model provides the model with our belief
about the likelihood of observations conditioned on the current
state. The sensory system consists of a pair of in-ear micro-
phones and the observation vector is extracted by identifying
three peaks in the cross-correlogram. These are transformed

into azimuth, D
�
= (D1, . . . ,DN ), where 0 ≤ N ≤ Nmax

is the number of candidate azimuth measurements. We assume
that at most one of the candidate measurements corresponds to
the true peak and that the rest are due to spurious peaks, ‘clut-
ter’ peaks. The true azimuth associated with the source state α
is given by

Dα
�
= (θα) = (θSα,cur − θHα ), (4)

where θα is the true location of the current speaker relative to
the perceiver’s head.
The measurement model is used in the ‘update’ state of the

particle filtering algorithm, where the particles are updated with
the knowledge we can gain from the new observations. Hence,
we are interested in the likelihood function, p(D|α). We note
that as Eq. 4 defines a deterministic mapping, the likelihood
satisfies p(D|α) = p(D|Dα), which we will base our devel-
opment on. We assume that each of the peak locations observed
are independent, so that

p(D|Dα) =
NY

i=1

p(Di|Dα). (5)
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Figure 3: Examples of speaker change segmentations from sep-
arate runs of the system. The top panel is the true segmentation
and the following panels are system outputs for: i) when the
head position is known, ii) the head position is observed with
some noise, and iii) no head position information is available.

Following the approach in [5] we develop a description for
each p(Di|Dα) based on the hypothesis that at most one of the
observed peaks will have arisen as a result of the true state space
and the remaining peaks are clutter. This is described below
by using the indicator variable ci, such that ci = T if Di is
associated with the true source, and ci = C if Di is associated
with clutter. The likelihood for a measurement from the true
source is taken to be

p(Di|Dα , ci = T ) = cα N (Di;Dα , σ
2
D) for D(Di),

(6)

where D �
= [−Dmax,Dmax] is the set of admissible azimuth

values for the microphones, and cα is a normalising constant.
Thus, a true source peak is assumed to be normally distributed
around the true relative azimuth. The likelihood of a clutter
peak is assumed to be uniformly distributed within the admissi-
ble interval, independent of the true relative azimuth

p(Di|ci = C) = UD(Di). (7)

In certain applications, information about the perceiver’s
position might be available and hence should be included in the
measurement model; Eq. 5 is thus expanded

p(D,H |α) =
NY

i=1

p(Di|Dα) · p(H |Hα) (8)

where H
�
= (θHobs) and Hα

�
= (θHα ) and we have assumed

that D and H are independent given the state, α. We take
the observation noise of the head position measurements to be
normally distributed

p(H |Hα) ∼ N (H ;Hα , σ
2
H). (9)

The σH is set to match the variance used for generating the
simulated, observed head tracks.

4. Results
The task is to estimate which speaker is active at each frame. It
was evaluated using the diarization error rate (DER) as defined
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Figure 4: DER averaged over 5 runs for different degrees of
simulated measurement noise in the self-position observations.

by [7]:

DER =
Number of frames incorrectly assigned

Total number of frames
×100. (10)

For each frame, the system’s judgement of the active speaker
was taken by finding the value of cur that was assigned the
most weight when summed across all particles. The ‘correct’
value was obtained from a hand segmentation of the data. DER
was measured either for systems which used no external self-
position estimate, or systems which employed self-position es-
timates with variable degrees of noise. The self-position esti-
mates were generated by adding Gaussian noise of known stan-
dard deviation to the true head orientation tracks.

Figure 3 shows the true speaker change segmentation (top
panel) against three examples of segmentations as output by the
system for different degrees of self-position noise: i) known
head position (i.e. no noise), ii) observed, noisy head position
and iii) no head position knowledge. The segmentation deterio-
tates as the head orientation noise increases.

The overall results for the system’s DER, averaged over
multiple runs, are presented in Figure 4. Note first that if the
head position is precisely known (i.e. variance equals zero) then
DER is around 15%. From Figure 3 it can be seen that most of
these errors occur as isolated frames and often correspond to
short pauses at speaker boundaries or within an utterance. Most
of these errors could be fixed with trivial post-processing. As
noise is added to the head position estimates performance dete-
riotates slowly for sigma up to 20◦ and then more rapidly. Once
the noise is greater than 50◦ the head track information provides
little advantage over having no initial estimate at all.

Figure 5 plots the RMS error in the inferred estimates of
perceiver’s head orientation (θH ) given initial head orientation
estimates with varying degrees of noise. As one would ex-
pect, the head tracking accuracy improves as soon as any self-
position information (however noisy) is provided. For refer-
ence, the dashed line on the plot shows the RMS error value of
the initial noisy estimate. The difference between the two lines
indicates the improvement in head position certainty, when lo-
calisation cues extracted from the acoustic signal are taken into
account in the algorithm. Note, diarization performance dete-
riorates rapidly at about the point when the tracked head er-
ror becomes comparable to the half angular separation between
speakers (i.e. allowing confusions to occur).
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Figure 5: RMS error (in degrees) for the inferred head orienta-
tion when using initial head orientation estimates with additive
noise of a given variance. Results averaged over 5 runs.

5. Conclusions
We have re-examined the task of tracking speaker changes us-
ing localisation from the perspective of a listener sitting in a
meeting performing natural head movements. This is a chal-
lenging problem as the effect of the perceiver turning his head
and the effect of a speaker change can hard to distinguish using
noisy binaural cues. A particle filtering solution is seen to work
well when perceiver head orientation is known a priori and to
degrade reasonably gracefully as noise is added to the head ori-
entation estimate. Future work will look at expanding the model
to handling multiple, simultaneous speakers.
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