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Abstract 
This paper proposes a new multichannel hybrid method for 
dereverberation of speech signals in noisy environments. This 
method extends the use of a hybrid noise reduction method for 
dereverberation which is based on the combination of 
Generalized Sidelobe Canceller (GSC) and a single-channel 
noise reduction stage. In this research, we employ Transfer 
Function GSC (TF-GSC) that is more suitable for 
dereverberation. The single-channel stage is an Adaptive 
Minimum Mean-Square Error (AMMSE) spectral amplitude 
estimator. We also modify the AMMSE estimator for 
dereverberation application. Experimental results demonstrate 
superiority of the proposed method in dereverberation of 
speech signal in noisy environments. 
Index Terms: Dereverberation, Spectral estimator, TF-GSC, 
AMMSE 

1. Introduction 
The main objective of speech enhancement is to reduce the 
corrupting noise and reverberation from received speech 
signal while preserving the original speech quality as much as 
possible. Some of de-noising methods can also be used in 
dereverberation [1]. These systems mainly estimate the 
amplitude of short-time spectrum of clean signal; then, the 
phase of received signal will be added to the estimated 
amplitude in order to obtain the enhanced signal. By 
modifying these algorithms, we can also reduce the (late) 
reverberation in noisy environments.  

In [1], Habets et al. presented a method for 
dereverberation which was based on Optimally Modified –
Log Spectral Amplitude (OM-LSA) estimator. On the other 
side, in [2], Abutalebi et al. proposed a hybrid de-noising 
method, called GSC-AMMSE, which is the combination of 
Generalized Sidelobe Canceller (GSC) with a single-channel 
noise reduction stage. The employed single-channel noise 
reduction stage is an Adaptive MMSE (AMMSE) which is a 
hybrid version of OM-LSA and β-order MMSE methods [3], 
[4]. AMMSE estimator is an adaptive speech spectral 
amplitude estimator that minimizes the MMSE of speech 
signal spectral amplitude under signal presence uncertainty. 
AMMSE estimator simultaneously searches for the optimal 
values of 1) probability of speech presence, and 2) the order of 
MMSE estimation for each frame.  

In this paper, we have proposed a hybrid method, called 
TF-GSC-AMMSE which is an adaptive beamformer followed 
by a post processor. The adaptive beamformer is the Transfer-

Function GSC (TF-GSC), which was proposed by Gannot et 
al. in [5]. Considering joint noise reduction and 
dereverberation application, we modify AMMSE method and 
employ it as the post processor. Also, we propose a new 
method for estimating the order of AMMSE estimator. This 
leads us to an enhancement system with significant noise and 
reverberation reduction in both high and low input SNRs. The 
system has also very low residual noise compared to the state-
of-the-art methods. 

Objective and subjective evaluation of TF-GSC-AMMSE 
method was performed under various conditions. We used 
Segmental Signal to Interference Ratio (SegSIR), Log-
Likelihood Ratio (LLR) distance and Perceptual Evaluation of 
Speech Quality (PESQ) [6], [7] in the evaluations. 

In section 2, we review the main concepts regarding TF-
GSCs and discuss the combining of TF-GSC and spectral 
estimator. We propose a new spectral estimator for 
dereverberation in section 3. In section 4, the performance of 
the proposed method is evaluated and compared with the 
conventional TF-GSC. Finally, section 5 consists of some 
concluding remarks. 

2. Hybrid TF-GSC and spectral estimator 
In [2], Abutalebi et al. proposed two hybrid methods that use 
OM-LSA or AMMSE estimators as a post-processor for GSC. 
In these methods, GSC beamformer is firstly applied on the 
microphone array signals. Then, a single channel spectral 
amplitude estimator improvers the output of GSC. 

GSC is a beamforming structure that is used for 
implementing a variety of linearly constrained adaptive array 
processors, including Frost’s algorithm [8]. GSC does the 
adaptive beamforming via two processing paths; in the first 
path, a signal-independent fixed beamformer enhances desired 
signal components. The second path consists of the blocking 
matrix and the adaptive portion, which provides a set of filters 
that adaptively minimize the noise power in the output [9]. 

The standard GSC structure assumes the received signals 
as simple delayed versions of source signal. In real room 
situations where this assumption is not valid, the desired 
signal leaks into the adaptive path of the GSC structure. This 
results in the distortion or cancellation of desired signal. As a 
remedy, Gannot et al. [5] proposed an improved version of 
GSC, called TF-GSC, which considers arbitrary transfer 
functions between source and microphones. A sub-optional 
solution for these arbitrary transfer functions was also 
proposed using transfer function ratios that were estimated 
online. The blocking matrix was constructed using same 
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transfer function ratios, thereby significantly reducing the 
leakage of the desired signal. 

Although TF-GSC can be used in moderate reverberant 
environments, it should be noted it does not reduce the 
amount of reverberation. As a remedy, the use of some post-
filters on the output of GSC (or TF-GSC) has been already 
proposed. 

In this research, we propose a hybrid method that uses 
modified AMMSE estimator as the post-processor for TF-
GSC. Ws also modify the AMMSE estimator and show that it 
has noticeable capability in dereverberation.  

3. Single-channel dereverberation stage 
AMMSE estimator [2] is a hybrid version of OM-LSA and β-
order MMSE methods for noise reduction. In this section, we 
modify AMMSE estimator and present an adaptive speech 
spectral amplitude estimator for dereverberation in noisy 
environments. Note the proposed estimator will be applied on 
the output of the TF-GSC, and it is a single-channel method.  

3.1. Problem formulation 

Reverberation is the process of multi-path propagation of an 
acoustic sound from its source to microphone. Let 

( )x n denote the clean speech signal, the observed signal ( )y n  
is given by 

 
( )

( ) ( ) ( ) ( )
z n

y n x n r n d n= + +  (1) 

where ( )r n  is a non-stationary interference (or signal 
reflections) and ( )d n  is a stationary interference (or 
background noise). Also, ( )z n  is the sum of direct signal and 
its reflections. The reverberant signal can be expressed as 

 
1

0

( ) ( ) ( )
h

L

j

jz n h n x n j
−

=

= −∑  (2)  

where ( )jh n  denotes the thj  coefficient of the impulse 
response of the acoustic plant between source and 
microphone, and hL  denotes the length of the impulse 
response.  

The aim of dereverberation is to form ˆ( )x n , an estimate 
of ( )x n , from ( )y n . This is a blind problem since neither the 
signal ( )x n  nor the acoustic impulse responses ( )jh n  are 
available. The acoustic impulse response is split into two 
segments, ( )eh n  and ( )lh n , so that 

 
,

,

( ), 0

( ) ( ), 1

0 otherwise.

e j l

j l j l h

h n j N

h n h n N j L

≤ <⎧
⎪

= ≤ < −⎨
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 (3) 

The parameter lN  can be chosen depending on the 
application or subjective preference. Equation (1) is re-written 
using equation (3): 

 
1 1

0

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
l h

l

N L

j j N

e l

j j

z n z n

y n h n x n j h n x n j d n
− −

= =

= − + − +∑ ∑  (4) 

where signal ( )ez n  consists direct signal and early reflections 
and ( )lz n  consists late reflections (reverberations). The 
purpose of dereverberation is to reduce the effect of late 
reverberation. . Due to the non-stationarity of the source and 
the statistical properties of the acoustic impulse response, we 
can assume that the early and late reflections are statistically 
independent. Therefore, we can suppress the late reverberant 
signal by treating it as an additive noise term [1]. 

The observed signal ( )y n  is transformed into the time-
frequency domain by applying the short-time Fourier 
transform (STFT). Firstly, the signal ( , )Y k l  is used to 

estimate the noise spectral variance { }2( , ) ( , )d k l E D k lλ = , 

where ( , )D k l  is defined as the STFT of the noise signal 
( )d n . Secondly, considering ( , )lZ k l  as the STFT of the 

signal component ( )lz n , the late reverberant spectral variance, 

{ }2( , ) ( , )
l

lz k l E Z k lλ =  is estimated. 

3.2. Modifying MMSE estimator for dereverberation 

In this section, we consider an adaptive method that estimates 
the early reflections spectral components ( , )

e
Z k l . This 

estimation is like AMMSE method in [2]. 
The gain function of β-order MMSE estimator ( , )G k lβ  

for reverberant speech signal can be written as 

 
1

;1; ( , )
2

( , )
( , ) ( 1)

( , ) 2
k l

k l
G k l M

k l

β

β
β

ν
ν β
γ

− −
⎡ ⎤⎛ ⎞= Γ +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 (5) 

where (.)Γ  is the gamma function, ( ; ; )M zα γ  is the 
confluent hyper-geometric function, and ( , )k lν  is:  

 ( , )( , ) ( , )
1 ( , )

k lk l k l
k l

ξν γ
ξ

=
+

 (6) 

where ( , )k lξ  represent the a priori SIR defined as: 

 

1 1 1
( , ) ( , ) ( , )
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( , ) ( , )

l
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l

l

z d
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d z

d z

k l k l k l
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k l k l

k l k l

ξ ξ ξ

λ λ
ξ ξ

λ λ
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= =
 (7) 

( , )k lγ  denotes the a posteriori SIR  

 
2( , )

( , )
( , ) ( , )

ld z

Y k l
k l

k l k l
γ

λ λ
=

+
 (8) 

where ( , )d k lλ , ( , )
lz k lλ  and ( , )

ez k lλ  are noise spectral 
variance, late reverberation spectral variance and early 
reverberation spectral variance (direct signal and early 
reflections), respectively. The early speech spectrum ( , )eZ k l  
is constructed by applying a time and frequency dependent 
gain function ( , )G k lβ  to ( , )Y k l , 

 ˆ ( , ) ( , ) ( , )eZ k l G k l Y k lβ=  (9) 
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3.3. Adaptive estimator 

In this section, we introduce a new dereverberation method 
that estimates the early speech spectral amplitude under signal 
presence uncertainty. This is an extension of one proposed for 
noise reduction in [2]. The estimator is similar to one 
described by Cohen in [3], but instead of using LSA estimator, 
it uses β-order MMSE estimator. 

Given two hypotheses, 0 ( , )H k l  and 1( , )H k l , 
respectively indicating speech absence and presence in the k-
th frequency bin of l-th frame, we have 

 0

1

( , ) : ( , ) ( , ) ( , )
( , ) : ( , ) ( , ) ( , ) ( , )

l

e l

H k l Y k l Z k l D k l
H k l Y k l Z k l Z k l D k l

= +

= + +
 (10) 

We assume that the STFT coefficients, for both speech 
and noise, are complex Gaussian variables.  
Based on the binary hypothesis model, 

 1

0

{ ( , ) | ( , )}
{ ( , ) | ( , ), ( , )} ( , )

{ ( , ) | ( , ), ( , )}(1 ( , ))

E A k l Y k l
E A k l Y k l H k l p k l

E A k l Y k l H k l p k l

β

β

β

=

+ −

 (11) 

where ( , ) ( , )eA k l Z k l=  is the STFT of the speech signal 
and ( , )p k l  is speech presence probability. we have 

 1
1/

0

ˆ ( , ) { { ( , ) | ( , ), ( , )} ( , )

{ ( , ) | ( , ), ( , )}(1 ( , ))}

A k l E A k l Y k l H k l p k l

E A k l Y k l H k l p k l

β

β β

=

+ −
 (12) 

By considering speech absence, we have 

 
00{ ( , ) | ( , ), ( , )} ( ( , ) )HE A k l Y k l H k l G Y k lβ β=  (13) 

During speech absence, the gain is constrained to be larger 
than a threshold Gmin, which is determined by subjective 
criteria for the noise naturalness. The lower-bound constraint 
does not result in the desired result because reverberation can 
still be clearly audible. Hence to suppress the non-stationary 
interference, we obtain 

0HG  as following 

 
0 min

( , )( , )
( , ) ( , )

l

d
H

d z

k lG k l G
k l k l
λ

λ λ
=

+
 (14) 

When speech is present, the conditional estimation of 
spectral component is defined by 

 
11{ ( , ) | ( , ), ( , )} ( ( , ) ( , ) )HE A k l Y k l H k l G k l Y k lβ β=  (15) 

where 
1
( , )HG k l  is the gain function of β-order MMSE 

estimator, that was obtained in (5). Substituting (13) and (10) 
into (12), the spectral gain is determined via 
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β β β

ββ

ββ

β β
ν
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λ λ

ν
γ

Γ + − −

+

= + −

⎡⎛ ⎞⎡ ⎤⎛ ⎞⎢⎜ ⎟= ⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎝ ⎠⎣ ⎦⎝ ⎠⎣

⎤⎛ ⎞
⎥× + −⎜ ⎟⎜ ⎟ ⎥⎝ ⎠ ⎦

 (16) 

Equation (16) presents the gain function for our proposed 
estimator (namely, AMMSE). It has two additional 
parameters; the first parameter, β, is the order of MMSE 
estimator computed in a manner explained in the next section. 
The second parameter ( , )p k l  is the estimation of conditional 
speech presence probability that is obtained by local and 
global spectral averaging in frequency domain [3]. These 
parameters make the speech signal amplitude more accurate; 
resulting excellent noise and reverberation suppression, while 
retaining weak speech components and avoiding the musical 
residual noise. 

3.4. Proper value for the order of AMMSE (β) 

In the proposed formula by You et al. [4], the value of β is 
adapted semi-linearly according to the frame SNR. It results in 
an equivalent value of β for all the spectral components of a 
frame. Here, we propose a method for estimating the value of 
β for each frame and each spectral component, individually, 
which makes the estimation more accurate.  

In this research, we propose the adaptation of β according 
to the probability of speech presence, ( , )p k l . Simulation 
results show that there is a direct relation between the value of 
β and the value of ( , )p k l .  

Assuming 0β > , we write the cost function of estimator 
as: 

 ( ) ( )2ˆ ˆ( , ), ( , ), ( , ) ( , ) .C A k l A k l A k l A k lβ ββ = −  (17) 

Now, let 0β < , so β β= −  and the cost function can be 
re-written as: 

 ( ) ( )
( )2

ˆ( , ), ( , ),ˆ( , ), ( , ), .
ˆ( , ) ( , )

C A k l A k l
C A k l A k l

A k l A k l
β

β
β =  (18) 

The denominator in (18) is an approximation of power 
spectrum to the exponent of 2 β . Therefore, taking a 
negative value for β has the effect of normalizing the cost 
function (17) (for positive β ) by the estimated power 

spectrum to the exponent of 2 β . This normalization 
increases the contribution of spectral valleys in the cost 
function (estimation error) compared to that of spectral peaks. 
Actually, this employs masking properties of human hearing 
system that more noise is likely to be audible in speech 
spectral valleys than in speech spectral peaks. 
Correspondingly, the proposed estimator performs more 
accurate in the spectral valleys. 

Considering above explanations, we apply following 
linear relationship between the value of β and ( , )p k l : 

 ( , ) ( , ) , 1 0k l p k lβ α α= × − ≤ <  (19) 

where α  is the linear coefficient.  
There is two important points here: 1) unlike the method 

by You et al. [6] that estimates β value for each frame, our 
proposed method determines the value of β for each frame and 
each frequency component and its value is obtained by a 
linear relationship with the probability of speech presence; 
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and 2) we consider negative values for β, that make our 
estimation more accurate in spectral valleys. 

4. Performance evaluation 
In order to examine the performance of TF-GSC-AMMSE 
method, we have considered a setup with the main speech 
source at 90° and the noise source at 15°. The sampling rate in 
the entire system is 16 kHz. In this evaluation, we have used 
white Gaussian noise with various SNRs (-10dB, -5dB, 0dB, 
5dB, 10dB, 15dB, 20dB) in two different values for 
reverberation time (RT60 = 200ms, 500ms). Also, the value of 
α (in equation (19)) has been empirically set to (-0.8). 

To evaluate the performance of the proposed method, we 
have used three objective measures: SegSIR, LLR distance, 
and PESQ [6], [7].  

In simulation, an eight-channel linear microphone array 
has been used. The spacing between microphones is 5 cm. We 
have compared the performance of hybrid method TF-GSC-
AMMSE with the input signal and the output of the TF-GSC 
(alone). The results have been drawn in Figures 1,  2 and 3 
for SegSIR, LLR distance, and PESQ, respectively. As shown, 
the proposed method has superior performance in terms of all 
three quality measurements in various input SNRs and in two 
different reverberant situations ( 60RT = 200ms  and 

60RT = 500ms ). 

5. Conclusions 
In this paper, we firstly modified a signal amplitude estimator 
(called AMMSE) for single channel speech dereverberation. 
The proposed estimator adaptively works based on a 
minimum mean-square error under speech presence 
uncertainty. This method has noticeable noise reduction and 
dereverberation in single microphone applications. Then, we 
used AMMSE algorithms as post-processors in the TF-GSC 
structure. This resulted in more dereverberation. It was shown 
that these combinations, give rise to improve dereverberation 
performance of the TF-GSC in noisy environments. 
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Figure 1: The SegSIR evaluation results of TF-GSC-
AMMSE method in RT60=200ms and RT60=500ms. 
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Figure 2: The LLR evaluation results of TF-GSC- 
AMMSE method in RT60=200ms and RT60=500ms. 
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Figure 3: The PESQ evaluation results of TF-GSC- 
AMMSE method in RT60=200ms and RT60=500ms. 
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