
Hybridisation of Expertise and Reinforcement Learning in Dialogue Systems

Romain Laroche 12, Ghislain Putois 1, Philippe Bretier 1, Bernadette Bouchon-Meunier 23

1 Orange Labs, Issy les Moulineaux, France
2 Laboratoire d’Informatique de Paris VI, Paris, France

3 Centre National de Recherche Scientifique, Paris, France
romain.laroche@polytechnique.org

Abstract
This paper addresses the problem of introducing learning ca-
pabilities in industrial handcrafted automata-based Spoken Di-
alogue Systems, in order to help the developer to cope with his
dialogue strategies design tasks. While classical reinforcement
learning algorithms position their learning at the dialogue move
level, the fundamental idea behind our approach is to learn at
a finer internal decision level (which question, which words,
which prosody, . . .). These internal decisions are made on the
basis of different (distinct or overlapping) knowledge. This pa-
per proposes a novel reinforcement learning algorithm that can
be used to make a data-driven optimisation of such handcrafted
systems. An experiment shows that the convergence can be up
to 20 times faster than with Q-Learning.
Index Terms: SDS, reinforcement learning, adaptive dialogue

1. Introduction
Spoken Dialogue Systems (SDS) with learning capabilities have
been deeply investigated these last ten years [1, 2, 3, 4]. The
primary goal pursued by these studies was to reduce the devel-
opment cost by automating the SDS design. They use Markov
Decision Process (MDP) to learn the best dialogue move ac-
cording to the current dialogue state. This approach has led to
promising results but, as [5, 6] acknowledge, some obstacles
are difficult to overcome. The high dimensionality of the dia-
logue states and actions is the main reason for all these troubles.
Firstly, the MDP sets (the state set and the action set) require a
tight tuning, which can only be performed by a reinforcement
learning expert and which is quite contrary to the original au-
tomation objective. Secondly, the learning process requires to
gather huge dialogue corpora which can be problematic depend-
ing on the application. Finally, even when all those conditions
are fulfilled, the automatically generated SDS reported in the lit-
erature are usually simple and hardly reach the dialogue quality
of the fine tuned handcrafted ones.

Releasing noticeably the automation goal, while [7, 8] fo-
cussed more specifically on the SDS robustness with POMDP,
[9, 10] made several attempts to improve the learning conver-
gence at the expense of even more MDP design. These pa-
pers propose to use various Hierarchical Reinforcement Learn-
ing algorithms (MAXQ [11] and HAM [12]) in order to help the
learning with a defined hierarchy of strategies: macro-strategies
(i.e. a strategy that is followed during several turns) and one-
dialogue-turn strategy. The one-dialogue-turn strategies se-
quences are optimised in order to fulfil a macro-strategy and
the transitions between macro-strategies are learnt too. While
[9, 10] correctly stresses that in a dialogue, the system needs to
handle macro-strategies, we rather insist on the fact that even a

single dialogue move is already most of the time the composi-
tion of several strategic decisions (see subsection 2.1).

Another group of studies [13, 14] went even a bit further
than [9, 10], and proposed to mix a handcrafted SDS with an
MDP-based SDS. The goal here is completely different: to op-
timise the dialogue capabilities of a conventional SDS. In sub-
stance, the idea consists in handcrafting almost totally the SDS
so that it provides a small collection of options among which the
MDP-based SDS picks the action to generate to the user. Our
paper completely agrees with this objective. We endeavour to
improve these previous works by proposing a novel framework
that works at the internal decision level (which question, which
words, which prosody, . . .), instead of the dialogue move level.
This enables us to drastically reduce the dimensionality of the
learning and to consequently speed up the convergence.

Section 2 gives a detailed description of the problem and
enumerates the constraints implied by the environment under
consideration, which leads us to propose an extension of MDP
called Module-Variable Decision Process (MVDP). Section 3
provides an algorithm for reinforcement learning in the MVDP
framework: the Compliance-Based Reinforcement Learning
(EBRL). Using a generalised problem, section 4 shows that
the EBRL alleviates the “curse of dimensionality” and outper-
forms the benchmarked algorithms that could have been applied
within the constraints defined in section 2. Finally, section 5
concludes the paper with the foreseen improvements.

2. Problem Description: Towards a New
Model

2.1. Problem Constraints

Figure 1 shows a part of the design of an automated hotline
dedicated to ADSL box installation. It reveals that the welcome
message can be split up into three internal decisions: nature of
the greeting/presentation, the help messages insertion or not and
finally some choices of questions. These internal decisions can
be made with a very localised view of the system state. Assum-
ing all the enumerated information is available, the choice of the
greeting message is dependent on the area of the call and the age
of the caller and the choice of the help message is dependent ba-
sically on the SDS expertise of the caller. All these dependency
definitions are part of the designer’s work and are not discussed
in this article. This paper aims at providing a model and an algo-
rithm for learning in such an environment. If we used a classical
MDP at the dialogue move level, for the figure 1 example, the
state set would be the crossproduct of all the dependency vari-
ables and the action set would also be the crossproduct of all
the alternatives. The dimensionality would soar, compromising
the convergence without an inordinate amount of dialogues. In

Copyright © 2009 ISCA 6-10 September, Brighton UK2479

10
.2

14
37

/I
nt

er
sp

ee
ch

.2
00

9-
66

0

Figure 1: Example of an dialogue move constituted with three internal decisions.

order to solve this “curse of dimensionality”, we consider the
decision process at an internal decision level. Doing this breaks
the Markovian assumptions. Indeed, the local state reached dur-
ing the “help message insertion” internal decision is not solely
dependent on the state-action pair of the decision concerning
the greeting message. Figure 2 illustrates the complexity im-
provement provided by our approach.

As the decision process is non-markovian, in a given state,
we cannot assume to be able to anticipate the next reached state.
As a consequence, we cannot use any bootstrapping method
[15], i.e. any method that updates expectation estimates on
the basis of the estimates of the following states. The best
reinforcement learning algorithms use bootstrapping, such as
Dynamic Programming [16] or Temporal Difference Learning
[17]. Solely Monte Carlo methods [15] are not bootstrapping.
We propose an improved version of Monte Carlo method for re-
inforcement learning. But first, let us cope with the definition of
a new decision process model that better reflects the problem:
the Module-Variable Decision Process.

2.2. Module-Variable Decision Process

A module is a processing unit that can choose an internal action
according to its local variables. This leads us to the definition
of the Module-Variable Decision Process (MVDP) framework
(M,VM , AM) where:

• M is the set of modules.

• ∀m ∈M , Vm is the variable space used in module m.

• ∀m ∈M , Am is the set of possible actions for m.

In figure 1, the modules are the diamond-shaped boxes la-
belled 1, 2 and 3. For module 1, the possible internal actions
are the 1.1, 1.2 and 1.3 transitions. The local states are not
illustrated. In subsection 2.1, we told that the dependency of
module 1 was the area of the call and the age of the caller. In
such a design, (Paris, 30) ∈ V1.

In a dialogue system, rewards are not synchronised with
internal decisions. Although rewards are received at each dia-
logue turn, some dialogue moves are composed of several in-
ternal decisions and some other dialogue moves are completely
handcrafted (i.e. without using the learning capabilities of the
system). As a consequence, internal decisions and rewards must

Figure 2: Comparison of complexity between learning
(y1, y2, y3) = f(x1, x2, x3) (on the left) and learning y1 =
f1(x1), y2 = f2(x2) and y3 = f3(x3) (on the right).

be associated with an absolute timestamp in R (typically ex-
pressed in dialogue turns or in seconds).

Each module has a policy. The policy governs the choices
that are made when the system needs to make a decision in
the module. A policy is a function from the variable space
into the action space πm : Vm 7→ Am. In order to build its
policy, the module may generate a state-action value function
Qm : Vm × Am 7→ R which intends to predict the dialogue-
term reward given the local state and the chosen action. The ex-
ploitation policy is the one that aims to maximise the dialogue-
term reward expectations after a given decision d:

rd =
∑

k

γtk−tdRk (1)

Where γ ∈ [0, 1] is the discount factor, used in order to
encourage the shortest path to a dialogue success, td is the time
when decision d has been made and tk > td is the time when
reward Rk has been received.

3. Compliance-Based Reinforcement
Learning

A (internal) decision d has the following features: the module
m where d is made, the (local) state v reduced to the relevant
information concerning d, chosen action a and timestamp t.

d = (m, v, a, t) ∈M × Vm ×Am × R (2)

An episode is the chain of decisions and rewards generated
during a dialogue. The CBRL added value consists in avoiding
to learn that an upfront decision is bad because the episode that
tried it made further bad decisions. The CBRL rates an episode
according to the system’s current policy. Thus, the CBRL may
consider that an experience for a decision is not meaningful be-
cause it regards its further decisions as irrelevant. Concretely,
the algorithm checks if the current policy would trigger the
same choices if it had to repeat a recorded episode. This rat-
ing cπ(e) ∈ R− is called the compliance of an episode e with
the policy π. It represents the deviation of the episode e deci-
sions from the policy π. The local compliance cπ(dk) is the
expected loss of performance implied by the chosen action ak
of decision dk, compared to the π-optimal one. It is computed
thanks to the Qmk (vk, ak) state-action value functions:

cπ(dk) = Qmk (vk, ak)− sup
a∈Amk

Qmk (vk, a) (3)

Then, the global compliance cπ(e) of an episode e =
(d1, ..., d|e|) after a decision d0,is computed with a formula
similar to that of the reward (equation (1)) is proposed:

cπ(e) =

|e|∑

k=1

βtk−t0cπ(dk) (4)

2480

Algorithm 1 Compliance-Based Reinforcement Learning
E = ∅, the set of episodes
Qm(v, a) = 0, the state-action function
loop

Generate a new episode e using Qm(v, a): E ← E ∪ {e}
for all dk ∈ e do

Compute episode-term reward rk {Equation 1}
end for
for all ei ∈ E do

for all dij = (mij , vij , aij , tij) ∈ ei do
Compute local compliance cij {Equation 3}
Compute episode-term compliance {Equation 4}

end for
end for
Compute state-action function Qm(v, a) {Equation 6}

end loop

Once corpus C = {mk, vk, ak, rk, ck}k∈[1,n] is generated,
the Monte Carlo method [15] is adapted to accept weighted av-
erage on the returns. Therefore, Q expectation is computed as
follows:

Cm,v,a = {rk, ck} such that {m, v, a, rk, ck} ∈ C (5)

Qm(v, a) =

∑

{rk,ck}∈Cm,v,a

rke
τck

∑

{rk,ck}∈Cm,v,a

eτck
(6)

Where τ is a parameter expressing the impact of the com-
pliance on the weight for the averaging. The exponential reflects
the intuition that several incompliances should multiply.

A CBRL implementation is provided by algorithm 1.

4. Experiment
4.1. The Generalisation Problem

In the SDS literature, most papers test their learning algorithms
with user simulations. However, we prefer to make our study
on a simple generalisation problem for several reasons: (1) the
generalisation problem provides a universal evidence of the in-
terest of the approach, the model and the algorithm, (2) user
simulations are too simple to grant a tangible evaluation of a di-
alogue system and (3) dialogue applications can be very unalike
and proving the effectiveness of a method on an application is
barely a proof for its effectiveness on another application.

Therefore, we consider in this section a problem that gener-
alises the example in figure 1. The system is given 27 alternative
dialogue moves which correspond to the cross combinations of
the three internal decision blocks proposing each 3 alternative
local actions. Every dialogue turn, the same chain of decisions
are made and the dialogue ends when:

• one of the three internal decision blocks is reached in a
dialogue failure state. A negative reward −1 is received,

• all three internal decision blocks have reached their dia-
logue success states. A positive reward +1 is received.

Excluding the dialogue failure state (the dialogue ends as
soon as they are accessed) but including the dialogue success
state, each internal decision block has 5 possible states where it
is required to take an internal decision. Therefore, the system

Figure 3: Comparison between the QL and CBRL algorithms.

has 124 non terminal global states (5× 5× 5 = 125 minus the
dialogue success state). In order to reflect the dialogue domain
variety, a strong Gaussian noise is applied to the system. Each
episode starts in a random non terminal state among the 124.

The main goal of this problem is to study the gain obtained
with the parallelisation of the problem thanks to the CBRL al-
gorithm as illustrated in figure 2.

4.2. Compared Algorithms

Three reinforcement learning methods are compared. For all of
them, an ε-greedy exploration is used with ε = 0.5× 0.998|E|.
The parameters used for each method were set in order to opti-
mise each algorithm’s performance:

• Compliance-Based Reinforcement Learning (CBRL):
algorithm 1, with τ 6= 0. The three internal decision
blocks constitutes the M module set. ∀m ∈ M,Vm
comprises the 5 non-terminal states and Am the 3 alter-
native local actions.

• Q-Learning (QL): Q-Learning on the MDP of 124 states
and 27 actions, as described in subsection 4.1.

• Monte Carlo (MC): Monte Carlo algorithm [15] on the
factored states, which is equivalent to CBRL with τ = 0.

4.3. Comparison with the Q-Learning Algorithm

As shown in figure 2, the complexity of the system is reduced
by 124×27

3×(5×3)
≈ 74. The CBRL algorithm takes great advantage

of the huge space reduction brought with the MVDP frame-
work and figure 3 reveals that after making 500 episodes, which
means basically 500 dialogue failures, QL algorithm only suc-
ceeded in surviving one turn and a half longer on average, while
CBRL has usually reached the optimal policy. The QL algo-
rithm actually requires 10000 episodes to reach the CBRL per-
formance after 500 episodes.

4.4. Impact of τ

Figure 4(a) shows the Monte Carlo control loop. Our algorithm
improves the evaluation process by evaluating as well the past
episodes quality for learning. As shown in figure 4(b), CBRL
with the optimal τ value: 1.4 performs significantly better than
MC (τ = 0). Figure 4(c) shows that for moderate τ values,
CBRL reliably outperforms MC which does not guarantee to
find the optimal policy. The fact that the compliance calculation
is based on a sub-optimal policy in the early episodes explains
the loss of performance when τ grows above 1.5.

2481

(a) Monte Carlo control
loop. See [15].

(b) Comparison between the MC and
CBRL algorithms.

(c) Gray scale view of the impact of τ value on the learning speed.

Figure 4: Ratio impact on the learning performance.

5. Conclusion
This paper investigates reinforcement learning for SDS. It fo-
cuses more precisely on an expertise/learning hybridisation of
the system. This approach leads to propose a novel decision
process model: the Module-Variable Decision Process. Under
this model, constraints prevent from using classical bootstrap-
ping methods such as TD Learning. Then, a new algorithm
is proposed: the Compliance-Based Reinforcement Learning.
Eventually, an evaluation on a generalised problem shows that
our algorithm outperforms all the well-known reinforcement
learning algorithms.

The scope of this contribution is enhanced in three direc-
tions. First, figure 1 has for purpose to illustrate in an automaton
design how internal decisions can combine and become a single
dialogue move. But the MVDP framework does not rely on the
automaton structure: the system gathers internal decisions in-
dependently of the internal structure, collects rewards, builds a
corpus and uses it to learn a best practice policy. Second, CBRL
can easily be adapted to accept any supervised learning algo-
rithm instead of the weighted average computed with formula
6. Third, the application domain of CBRL can be extended to
any handcrafted system requiring learning capabilities such as
robotics or artificial intelligence design for video games.

As for perspectives, the algorithm has been integrated in
a dialogue application for internet box installation help for ap-
plicative tests. Concerning the theoretical aspects, we plan to
study the correspondence between the compliance and the aver-
age weights and to introduce uncertainty handling to the CBRL
algorithm.

6. Acknowledgements
This research has received funding from the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013)
under grant agreement number 216594 (CLASSIC project:
www.classic-project.org).

7. References
[1] E. Levin, R. Pieraccini, and W. Eckert, “Using markov

decision process for learning dialogue strategies,” in Pro-
ceedings of ICASSP1998, 1998.

[2] S. Singh, M. Kearns, D. Litman, and M. Walker, “Rein-
forcement learning for spoken dialogue systems,” 1999.

[3] S. J. Young, “Probabilistic methods in spoken-dialogue
systems,” in Philosophical Transactions of the Royal So-
ciety, ser. Royal Society of London Philosophical Trans-
actions Series A, vol. 358, Apr. 2000, pp. 1389–1402.

[4] O. Lemon and O. Pietquin, “Machine learning for spo-
ken dialogue systems,” in Proceedings of the European
Conference on Speech Communication and Technologies
(Interspeech’07), August 2007, pp. 2685–2688.

[5] T. Paek, “Reinforcement learning for spoken dialogue sys-
tems: Comparing strengths and weaknesses for practical
deployment,” 2006.

[6] T. Paek and R. Pieraccini, “Automating spoken dialogue
management design using machine learning: An industry
perspective,” Speech Communication, vol. 50, 2008.

[7] J. Williams and S. Young, “Scaling up pomdps for dia-
log management: The summary pomdp method,” in Au-
tomatic Speech Recognition and Understanding, IEEE,
2005, pp. 177–182.

[8] S. Young, “Using pomdps for dialog management,” in
Spoken Language Technology Workshop, IEEE, 2006.

[9] S. Cuayáhuitl, H.and Renals, O. Lemon, and H. Shi-
modaira, “Reinforcement learning of dialogue strategies
with hierarchical abstract machines,” in Proceedings of
IEEE/ACL Workshop on Spoken Language Technology
(SLT), December 2006.

[10] H. Cuayáhuitl, S. Renals, O. Lemon, and H. Shimodaira,
“Hierarchical dialogue optimization using semi-markov
decision processes,” in Proceedings of the European Con-
ference on Speech Communication and Technologies (In-
terspeech’07), August 2007.

[11] T. G. Dietterich, “The maxq method for hierarchical re-
inforcement learning,” in In Proceedings of the Fifteenth
International Conference on Machine Learning. Morgan
Kaufmann, 1998, pp. 118–126.

[12] R. Parr and S. Russell, “Reinforcement learning with hier-
archies of machines,” in Advances in Neural Information
Processing Systems, M. I. Jordan, M. J. Kearns, and S. A.
Solla, Eds., vol. 10. The MIT Press, 1997.

[13] S. Singh, D. Litman, M. Kearns, and M. Walker, “Opti-
mizing Dialogue Management with Reinforcement Learn-
ing: Experiments with the NJFun System.” Journal of Ar-
tificial Intelligence Research, vol. 16, pp. 105–133, 2002.

[14] J. Williams, “The best of both worlds: Unifying conven-
tional dialog systems and pomdps,” in International Con-
ference on Speech and Language Processing, 2008.

[15] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction (Adaptive Computation and Machine Learn-
ing). The MIT Press, March 1998.

[16] R. Bellman, Dynamic Programming. Princetown Uni-
versity Press, 1957.

[17] R. S. Sutton, “Learning to predict by the methods of tem-
poral differences,” in Machine Learning, 1988, pp. 9–44.

2482

