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Abstract 
Spectral envelopes and harmonics are the building elements of 
a speech signal. By estimating these elements, individual 
speech sources in a mixture observation can be reconstructed 
and hence separated. Transcription gives the spoken content. 
More important, it describes the expected sequence of spectral 
envelopes, if modeling of different speech sounds is acquired. 
Our recently proposed single-microphone speech separation 
algorithm exploits this to derive the spectral envelope 
trajectories of individual sources and remove interference 
accordingly. The correctness of such transcription becomes 
critical to the separation performance. This paper investigates 
the relationship between the correctness of transcription 
hypotheses and the orthogonality of associated source 
estimates. An orthogonality measure is introduced to quantify 
the correlation between spectrograms. Experiments verify that 
underlying true transcriptions lead to a salient orthogonality 
distribution, which is distinguishable from the counterfeit 
transcription one. Accordingly a transcription identification 
technique is developed, which succeeds in identifying true 
transcriptions in 99.74% of the experimental trials.1 
Index Terms: speech separation, orthogonality, transcription, 
speech enhancement 

1. Introduction 
Speech separation is a fundamental problem in speech 
processing. In typical situations, multiple sound sources, in the 
form of signals from target speakers, competing speech and 
background noise, are present, constituting the resultant input 
mixtures. These sound sources overlap in both time and 
frequency domains, corrupting each other. Separation of 
individual speech sources from mixture signals becomes 
essential. One popular approach is independent component 
analysis (ICA), which relies on the statistical property 
between sources and the availability of multiple input 
mixtures [1]. This paper focuses on single-microphone speech 
source separation. 

Human being is capable of segregating interested sound 
sources from interference and background noise, even with a 
single ear [2], [3]. Modeling of how human separates 
concurrent sources may be one viable way to extract target 
speech sources [4]-[6]. This approach is referred to as 
computational auditory scene analysis (CASA). Our 
perceptual system performs an auditory scene analysis for the 
input mixture, by examining primitive, acoustic regularities 
(for example, harmonicity and common fate etc.) and applying 
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high-level knowledge like familiar speech patterns. Most of 
the CASA based separation methods utilize primitive 
regularities, in particular, the strong harmonicity cue. 
However, tracking multiple pitch frequencies is difficult per se 
[7] and perceptual experiments show that the knowledge of 
familiar speech patterns is indispensible to proper segregation 
[3], [8]. 

We recently proposed a speech separation algorithm based 
on speech production and modeling of familiar speech patterns 
[9]. Individual speech sources are estimated in terms of their 
spectral envelope trajectories and harmonic structures. Each 
spectral envelope trajectory is found by matching the input 
mixture with a transcription and speech models. The 
interference source is then removed accordingly. This 
transcription information provides linguistic knowledge of the 
source, but not the actual acoustic signal. 

True transcriptions lead to estimates close to ideal sources, 
whereas counterfeit transcriptions do not. In the following, a 
transcription identification technique is proposed. The 
underlying transcriptions of sources are identified from a set 
of hypothesized word-level transcription candidates. We 
introduce an orthogonality measure and analyze the 
orthogonality generated from true and counterfeit 
transcriptions. Experimental results show that the 
orthogonality measure between source estimates and the input 
mixture provides reliable transcription identification. 

2. Transcription-driven speech separation 
and orthogonality 

The separation algorithm [9] is briefly reviewed to illustrate 
the role of a transcription in source estimation and the 
consequence of true and counterfeit transcriptions. 

2.1. Model-based speech separation algorithm 

An input mixture signal x(n) is related to its two constituent 
speech sources x1(n) and x2(n) as 

 )()()( 21 nxnxnx +=  (1) 

Figure 1 gives the block diagram of the model-based speech 
separation algorithm. Let xi(n) be the current target source (i ∈ 
{1, 2}). 

 
Figure 1: Block diagram of the model-based speech 
separation algorithm. 
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xi(n) is estimated in a ‘synthetic’ manner, by working out 
the associated spectral envelope trajectory and harmonics. In 
Stage 1, speech models are used to represent the phonetic-
acoustic mapping (i.e. the normalized spectral envelopes for 
individual speech sounds). Consequently, the transcription 
dictates the expected sequence of spectral envelopes. Let  
Pxi(ω) be the power spectral density of xi(n). We estimate 
Pxi(ω) by forced alignment of x(n) with the transcription. By 
concatenating and replicating the model parameters according 
to the resultant state-level time-alignment, Pxi(ω) is revealed. 
Pxi(ω) is further revised by adjusting the gain at different time 
instants. Accordingly, a Wiener filter [10] is derived and 
applied to x(n). A source estimate xi”(n) is output. Wiener 
filtering is used here to remove the interference source. Recall 
that the input transcription explicitly determines the models 
and their order for the generation of spectral envelope 
trajectory, hence, correct transcription is necessary for proper 
separation. Stage 2 is aimed to retain the pitch harmonics of 
xi(n) and remove any harmonics that belong to the interference 
source, as the harmonic structures of both x1(n) and x2(n) 
remain after Stage 1. 

The filter output xi”(n) varies with the input transcription, 
depending on Pxi(ω) estimated. In Figure 2, two distinct 
Wiener filters are shown. They are derived for different 
sources. The input mixtures are identical. Comparing the 
power spectra between the output and the associated Wiener 
filter, the output estimate closely follows the filter response 
and reflects the spectral characteristics of the filter. Hence, 
substantial difference between the two output estimates is 
observed. 
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Figure 2: Two output power spectra generated by 
distinct Wiener filters. (left) Filter derived for x1(n); 
(right) Filter derived for x2(n). Identical input mixture 
signal is used. 

2.2. True and counterfeit transcriptions 

Suppose two Wiener filters are derived respectively by an 
underlying true transcription (that corresponds to the target 
source xi(n)) and a counterfeit transcription (belongs to neither 
of the sources). Considering the correlation between each 
filter output with the input mixture x(n) = x1(n) + x2(n), it is 
expected that the one from the true transcription has a higher 
degree of correlation with x(n) than the one from counterfeit 
transcription. Note that the estimation error of a Wiener filter 
is orthogonal to the input mixture x(n). As the output 
generated from a counterfeit transcription bears a component 
that represents the counterfeit transcription and an error 
component which is orthogonal to x(n), consequently, this 
output will have negligible correlation to x(n). 

Moreover, for independent speech sources x1(n) and x2(n), 
if both true transcriptions are used to construct the Wiener 
filters, one of the filter outputs will be close to Px1(ω) with 
residue coming from x2(n). The other filter output will be close 

to Px2(ω) with residue coming from x1(n). Thus these two filter 
outputs will be correlated. If one or more counterfeit 
transcriptions are used instead, the two filter outputs will be 
orthogonal. 

2.3. Orthogonality measure 

The degree of correlation between random variables is often 
measured by the correlation coefficient [11]. For two 
waveforms or spectrograms, we use the angle of the inner 
product as a measure of correlation. The inner product of two 
real n-dimensional vectors (ℜn), y1 and y2, is defined as 
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We calculate the orthogonality θ between the two non-zero 
vectors y1, y2 (as a measure of correlation in an angle sense) 
by 
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where 2⋅ is the Euclidean norm. The two norms in the 

denominator normalize the correlation and make the measure 
of orthogonality bounded and independent of the lengths of y1 
and y2. If 〈y1, y2〉 = 0, the y1 and y2 are orthogonal (θ = π/2 rad). 
The closer θ to π/2 rad (90°), the more orthogonal are the two 
vectors. This cosine angle can be related to correlation 
coefficient that the correlation coefficient of two zero-mean 
random variables represents the expected cosine angle 
between the two sampled vectors. 

To measure orthogonality for our transcription 
identification task, the above inner product is operated on 
ℜm×n (the set of m × n real matrices). It is given by 
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for Y1, Y2 ∈ℜ m×n, where tr denotes the trace of a matrix. ℜ m×n 
here represents the magnitude spectrogram space. Hence, m 
and n are the numbers of frequency bins and frames 
respectively. This inner product 〈Y1,Y2〉 is the same as the 
inner product of the corresponding vectors in ℜmn by taking 
the matrix elements column-wise or row-wise. As a result, the 
angle θ, as our measure of the orthogonality between two 
magnitude spectrograms is given by 
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where F⋅ represents the Frobenius norm. Given that the inner 

product is operated on the magnitude spectrograms, the 
elements of Yi are non-negative. This implies 0 ≤θ ≤ π/2. 

The experiments in the next section illustrate that the 
above angle-based orthogonality measure provides 
discrimination between true transcriptions and counterfeit 
transcriptions. Assume that N possible transcription 
hypotheses are available and the underlying true transcriptions 
are included. By examining the distribution of θ generated 
from these hypotheses, a transcription identification technique 
is proposed to distinguish the true transcriptions of x1(n) and 
x2(n) from the others. 
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3. Experiments and discussions 
The above inner-product based orthogonality measure is first 
applied to a set of speech sources. Orthogonality between 
ideal speech sources is examined. Then, statistics of the angle 
θ collected from Wiener-filtered source estimates with true 
transcriptions is compared with those obtained from 
counterfeit transcriptions. 100 continuous speech utterances of 
American English from TIMIT corpus [12] are used. They are 
in distinct spoken contents. The average duration is about 
three seconds. There are 62 male and 38 female speakers. 
4950 mixture signals are generated by mixing all possible 
combinations of two utterances at equal power. 

Figure 3 depicts the experimental setup, specifically, the 
two spectrograms which orthogonality is measured from. The 
measurement is taken either: between both ideal speech 
sources x1(n) and x2(n) (θA); between one of the source 
estimates and the input mixture (θB); or between both source 
estimates x1”(n) and x2”(n) (θC). To focus on the orthogonality 
of Wiener-filtered source estimates, the magnitude 
spectrogram of the source bearing the considered transcription 
is directly adopted to compute Pxi(ω), acting as the aligned 
model sequence. 

 
Figure 3: Orthogonality measure is taken either 
between: both ideal speech sources (θA); one of the 
source estimates and the input mixture (θB); or both 
source estimates (θC). 

3.1. Orthogonality between ideal speech sources 

The orthogonality between ideal speech sources x1(n) and x2(n) 
is studied. Figure 4 shows the distribution of θA measured 
from different source combinations. Most speech sources are 
found to be approximately orthogonal. The maximum and 
minimum θA measured are 85.39° and 55.81° respectively. 
The mean and standard deviation are 74.03° and 4.21° 
respectively. 
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Figure 4: Histogram of θA measured between ideal 
speech sources. 

3.2. Orthogonality between one source estimate and 
input mixture 

The orthogonality between a source estimate and the input 
mixture is examined here. The transcription hypothesis set 
consists of the 100 transcriptions from all the source 
utterances. For an input mixture, the constituent speech 
sources give the two true transcriptions and 98 remaining 
transcriptions are counterfeit. θB from true transcriptions and 
counterfeit transcriptions are measured respectively. 

Figure 5 depicts the histograms of θB. Observing the 
distributions of θB under cases of true transcriptions and 
counterfeit transcriptions, they are highly different. With 
counterfeit transcriptions, the source estimate and the input 
mixture are orthogonal, with θB close to 90°; whereas with 
true transcriptions, the source estimate and the input mixture 
are correlated. Note that the distribution for true transcriptions 
is approximately symmetric with a mean value of 52.5°. This 
confirms that true transcriptions lead to source estimates 
correlated to input mixtures, but not for counterfeit 
transcriptions. 
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Figure 5: Histograms of θB measured between input 
mixture and source estimate. (left) True transcription; 
(right) Counterfeit transcription. 

3.3. Orthogonality between source estimates 

For an input mixture, there is a corresponding set of two 
underlying true transcriptions and (C2

100 - 1) = 4949 
counterfeit transcription sets, where C2

N is the choose function. 
Over 4950 mixture signals, θC measured from true 
transcription sets and from counterfeit transcription sets are 
analyzed. The results are given in Figure 6. 
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Figure 6: Histograms of θC measured between source 
estimates. (top) Both transcriptions are true; (bottom 
left) One true and one counterfeit transcription; and 
(bottom right) Both transcriptions are counterfeit. 
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Comparing these histograms, if there is at least one 
transcription is counterfeit, the filtered source estimates are 
highly orthogonal (as shown in bottom left and right 
histograms). On the other hand, if the true transcriptions for 
both sources are used (top histogram), the θC measured are 
smaller, showing that the estimates are relatively correlated. 
This confirms our conjecture discussed in Section 2 and the 
measure of θ  between source estimates discriminates true 
transcriptions from counterfeit transcriptions. 

3.4. Transcription identification 

With the above statistical study of θ, here we propose a 
transcription identification technique to choose the true 
underlying transcriptions from a set of hypotheses. Comparing 
the distributions in Figure 5 and 6 (θB and θC respectively), θB 
obtained from true transcriptions are much far away from 
those obtained from counterfeit transcriptions in Figure 5, 
located at smaller values. This implies that the orthogonality 
measure θB (between the mixture and a source estimate) better 
differentiates between true and counterfeit transcriptions. 
Moreover, considered the computation involved in measuring 
θB from all possible N transcriptions and measuring θC from 
all C2

N transcription hypothesis pairs, the identification 
decision is made to: choose the two transcriptions having 
minimum θs measured between the input mixture and the 
corresponding source estimate (i.e. θB). 

This transcription identification technique is applied to the 
4950 mixture signals above with the 100 transcription 
hypotheses. Table 1 shows the identification results. 99.74% 
of the trials have correctly identified both underlying true 
transcriptions. 

Table 1. Identification rate of underlying true 
transcriptions. 

 No. of successful identification 
trials (identification rate) 

Both true transcriptions 
are identified 4937 (99.74 %) 

At least one true 
transcription is 

identified 
4945 (99.90 %) 

 
Traditional ICA or blind source separation (BSS) 

approaches tackle the separation problem by manipulating 
multiple microphone inputs and a demixing matrix [1]. Certain 
statistical properties between source estimates are achieved 
during iterations. Throughout the proposed transcription 
identification technique and the model-based separation 
algorithm, the underdetermined problem ⎯ separation of 
speech sources recorded from a single microphone input, 
becomes much feasible. This improvement is due to the use of 
prior knowledge about familiar speech sounds in the form of 
speech models in deriving the hidden transcriptions and source 
estimates in our formulation. The set of allowed transcriptions 
from the identification technique and source estimates from 
the separation algorithm are therefore constrained. Take an 
example: One trivial solution to achieve minimum θB is to use 
an all-pass filter as the Wiener filter, however, this is ruled out 
by generally low-pass speech models. 

The set of transcription hypotheses can be constructed by 
enumerating all possible transcriptions with grammar and 
language model, which are typically available in speech 
recognition [13]. 

Compared with speech recognition, this transcription 
identification serves the similar purpose; however, the 
orthogonality measure together with the model-based 
separation algorithm provide another cue, besides the acoustic 
likelihood. 

4. Conclusions 
Estimation of spectral envelopes and harmonics of individual 
sources enables separation of concurrent speech signals from a 
mixture observation. One possible way to estimate the spectral 
envelope trajectory is to look up the sequence of associated 
speech models according to a presumed transcription. A 
transcription identification technique has been proposed in this 
paper to select the underlying transcriptions from a set of 
hypotheses. A concise orthogonality measure is introduced to 
compute the correlation between two spectrograms. Our study 
discovers that source estimate from counterfeit transcriptions 
are orthogonal to mixture observation, whereas this is not the 
case for estimates from true transcriptions. Furthermore, the 
proposed transcription identification technique has 
successfully identified the underlying true transcriptions of 
both sources in 99.74% of experimental trials. 
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