On the Estimation and the Use of Confusion-Matrices for Improving ASR Accuracy

Omar Caballero Morales and Stephen Cox

School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, U.K.

S.Caballero-morales@uea.ac.uk, s.j.cox@uea.ac.uk

Abstract

In previous work, we described how learning the pattern of recognition errors made by an individual using a certain ASR system leads to increased recognition accuracy compared with a standard MLLR adaptation approach. This was the case for low-intelligibility speakers with dysarthric speech, but no improvement was observed for normal speakers. In this paper, we describe an alternative method for obtaining the training data for confusion-matrix estimation for normal speakers which is more effective than our previous technique. We also address the issue of data sparsity in estimation of confusion-matrices by using non-negative matrix factorization (NMF) to discover structure within them. The confusion-matrix estimates made using these techniques are integrated into the ASR process using a technique termed as "metamodels", and the results presented here show statistically significant gains in word recognition accuracy when applied to normal speech.

Index Terms: confusion-matrix modelling, metamodels, non-negative matrix factorization

1. Introduction

In previous work on improving the recognition of disordered (dysarthric) speech, we argued that conventional speaker adaptation techniques were inappropriate and that learning how to correct phone sequences is a better strategy. We achieved this by modelling a speaker’s pattern of errors, represented in a phoneme confusion-matrix, in two different ways: by using a set of discrete Hidden Markov Models (HMMs), which we termed “metamodels” [1], and a network of weighted finite state transducers (WFSTs) at the confusion-matrix, lexicon, and language model levels [2]. Although these techniques significantly increased word recognition accuracy for low intelligibility speakers, they failed to increase performance with high intelligibility dysarthric speakers, or with normal speakers, and in some cases, the performance was worse than the baseline [1]. We observed in later experiments that the performance of the metamodels and the WFSTs relied critically on the accuracy of the phoneme output sequences used for confusion-matrix estimation. This observation led to the first issue discussed in this paper, which is a method to obtain training phoneme sequences that increase performance when used with metamodels. Details of the method are given in Section 2.1, and the metamodels are reviewed in Section 2.3. The second issue is related to the problem observed when the data available for confusion-matrix estimation is small, which could be used to make improved estimates for a “test” speaker given only a few samples from his/her speech. An advantage of this technique is that it was able to remove some of the noise present in the sparse estimates, while retaining the particular speaker’s confusion-matrix patterns. This approach is reviewed in Section 2.2.

Here, the NMF technique is extended to estimate also insertion patterns, and we analyse the effect of pre-processing adjustments (e.g. smoothing) in the NMF estimates. The quality of the estimates is dependent on two factors, the degree of smoothing and the NMF process itself, and here we measure the effect of each factor. This is presented in Section 4.1. In addition, we integrate the NMF estimates into the metamodels, and evaluate their performance in word recognition accuracy for normal speakers.

The results presented in Section 4.2 show that the proposed method to obtain the phoneme sequences for confusion-matrix estimation statistically improved the performance of the metamodels for normal speakers when compared with the baseline, which was MLLR adaptation. The use of NMF also increased the previous performance of the metamodels when few utterances were available for confusion-matrix estimation. In Section 5 we discuss these findings.

2. Preliminaries

2.1. Confusion-Matrix Estimation

The procedure to estimate a confusion-matrix is illustrated in Figure 1. We define W as the sequence of words that the speaker wished to utter, and \hat{P} as the sequence of phonemes decoded by an ASR system; hence, \hat{P} includes effects of both mispronunciations by a speaker and errors made by the recogniser. If W is transcribed at the phonemic level as P, and a sub-set $P' \in \hat{P}$ is selected for “training”, a confusion-matrix that models $Pr(\hat{p}_j|p_i)$ can be estimated from the alignment of $\{P,P'\}$.

Because p_i is the ith phoneme in the postulated phoneme sequence P, and \hat{p}_i the ith phoneme in the decoded sequence \hat{P}, $Pr(\hat{p}_i|p_i)$ represents the probability that the phoneme p_i is recognised when p_i is uttered. The alignment also identifies phonemes \hat{p}_i that are inserted, and phonemes p_i that are deleted.

Now we take some nomenclature from [3] to define confusion-matrices estimated from large amounts of data (target) and from sparse data (partial). For a speaker S_i, a target confusion-matrix, which is estimated using all the available utterances from that speaker, is designated as CM_{Ti}. In addition, partial confusion-matrices from that speaker, defined as CM_{Tj}, are estimations. P' can be obtained by using a phoneme language model (\hat{P}_{PB}), or a word language model (\hat{P}_{WB}). Details are given in Section 2.1.1.

1
Estimated by using \(U = \{5, 10, 15, 20, 30\} \) utterances. In Section 2.1.1, we present the method to obtain the most suitable \(P^\ast \) for confusion-matrix estimation. Details of the application of NMF to the partial confusion-matrices, and how they are integrated into the recognition process, are presented in the next sections.

2.1.1. A Method for Obtaining \(P^\ast \)

In previous experiments [1], \(P^\ast \) was decoded by using a phoneme-loop language model. This is equivalent to using a phoneme-bigram (PB) language model with a grammar scale factor\(^2\) of zero. These phoneme sequences can be expressed as \(\{P^\ast_{\text{PB}}, s = 0\} \), where PB denotes the kind of language model used, and \(s \) the magnitude of the grammar scale factor.

In later experiments with disordered speech, the grammar scale factor was increased (e.g., \(s = 10 \), and \(s = 25 \)). As shown in Figure 2, this change improved the metamodels’ performance. An alternative method is shown as the dotted lines in Figure 1. Here, the training speech is decoded by using a word-bigram (WB) language model with a grammar scale factor\(^2\) of zero. The phonemic transcriptions of the words decoded then provide the phoneme sequences \(P^\ast_{\text{WB}} \). Because of the extra constraint of a word-level language model in the decoding process, prior to conversion to phonemes, the accuracy of \(P^\ast_{\text{WB}} \) is higher than just using a “phoneme loop” decoder. As shown in Figure 2, the metamodels built using these sequences for training-data achieved the highest word recognition accuracy (Section 2.3 describes in detail how the metamodels are used in the recognition process).

It is interesting to note that, while \(P^\ast_{\text{WB}} \) had the highest phoneme accuracy, and \(\{P^\ast_{\text{PB}}, s = 0\} \) the lowest, this did not necessarily correlate with the performance of the metamodels. The key point is the rate of phoneme deletions. Analysis showed that \(P^\ast_{\text{PB}} \) could be quite accurate, with a low number of insertion and substitution errors, but could also have a high rate of deletion errors (e.g., due to deleted phoneme sequences), which decreases the performance of the modelling technique [2]. In this case, metamodels trained with \(\{P^\ast_{\text{PB}}, s \geq 0\} \) performed better for some speakers with disordered speech. Hence, the use of \(P^\ast \) was based on two measures: high phoneme accuracy (from the training set), and low rate of deletions. For normal speakers, \(P^\ast = P^\ast_{\text{WB}} \) was a suitable choice.

2.2. Non-negative Matrix Factorization (NMF)

In [3], we reported that there was inherent structure and correlations present in the confusion-matrices estimated from data from speakers in the Wall Street Journal (WSJ) database. NMF was proposed as an approach to utilise these correlations to estimate an individual speaker’s confusion-matrix given some sparse data from him/her. An advantage of using NMF over other similar methods, such as Principal Component Analysis (PCA) and Singular Value Decomposition (SVD), is the non-negativity property. This makes it suitable to estimate confusion-matrix probabilities (e.g., \(\text{Pr}(\tilde{y}^\ast | P_i) \)) that are restricted to the range \([0, 1]\). Although there is no guarantee that the estimates will be \(< 1 \), the normalisations required are less severe than those required if negative estimates are present.

NMF seeks to approximate an \(n \times m \) non-negative matrix \(V \) by the product of two non-negative matrices \(W \) and \(H \):

\[
V \approx WH. \tag{1}
\]

\(W \) is an \(n \times r \) matrix and \(H \) is an \(r \times m \) matrix, where \(r < \min(n, m) \). When \(r < \min(n, m) \), the estimate of \(V \), \(\hat{V} = WH \), can be regarded as having been projected into and out of a lower-dimensional space \(r \) [5]. The columns of \(W \) are regarded as forming a set of (non-orthogonal) basis vectors that efficiently represent the structure of \(V \), with the columns of \(H \) acting as weights for individual column vectors of \(V \) [3].

Estimation of \(V \) is accomplished by minimising a distance function between \(WH \) and \(V \), which is defined by the Frobenius norm [5]. The minimisation algorithm is the one proposed by Lee and Seung in [6].

2.2.1. Target Confusion-Matrix Estimation

In this work, the Direct model as defined in [3] was used for confusion-matrix estimation. Each column of \(V \) is a target confusion-matrix \(CM^\ast \), written out column by column from a training-set speaker \(S_y \). To estimate a target confusion-matrix \(CM \) from a partial confusion-matrix \(CM_y \) of a “test” speaker \(S_y \), \(CM_y \) is added as an extra column to \(V \). When NMF is
applied to V, the estimated confusion-matrix \mathbf{CM}^V is retrieved from \hat{V} and is re-normalised so that its rows sum to 1.0. As presented in [3], a weighted distance squared difference measure $D(\mathbf{CM}^y, \mathbf{CM}^x)$ was used to assess the quality of the estimates of \mathbf{CM}^y. The process is iterated until the obtained estimates converge. More information of the algorithm can be found in [3].

2.2.2. Smoothing

If the data available from a speaker is very small, the partial confusion-matrix \mathbf{CM}_{ij} will be too sparse to make an improved estimate using NMF. Hence, \mathbf{CM}_{ij} is smoothed using a speaker-independent confusion-matrix \mathbf{CM} that is well estimated from the training data. If the total number of non-zero elements in \mathbf{CM}_{ij} is less than a threshold $CT = (0, 2, 5)$, the row is replaced by the equivalent row of \mathbf{CM}.

2.3. Metamodels

The use of “metamodels” as a technique to integrate phoneme models into the word recognition process was first described in [1] and was also used in [7]. The architecture of the metamodel of a phoneme is shown in Figure 3. Each state of a metamodel has a discrete probability distribution over the symbols for the set of phonemes, plus an additional symbol labelled DELETION. The central state (2) of a metamodel for a certain phoneme models correct decodings, substitutions and deletions of this phoneme made by the recogniser. States 1 and 3 model (possibly multiple) insertions before and after the phoneme. The parameters of the metamodels are trained by using the partial confusion-matrices \mathbf{CM}_{ij} estimated from accurate alignments of P and P^* as detailed in section 2.1.

![Figure 3: Architecture of a metamodel.](image)

As an example of the operation of a metamodel, consider a hypothetical phoneme that is always decoded correctly without substitutions, deletions or insertions. In this case, the discrete distribution associated with the central state would consist of zeros except for the probability associated with the symbol for the phoneme itself, which would be 1.0. In addition, the transition probabilities a_{02} and a_{24} would be set to 1.0 so that no insertions could be made. Before recognition, a language model is used to compile a “meta-recogniser” network, which is identical to the network used in a standard word recogniser except that the nodes of the network are the appropriate metamodels rather than the acoustic models used by the word recogniser. At recognition time, the output phoneme sequence P^* is passed to the meta-recogniser to produce a set of word hypotheses [1].

In [3], NMF was used to obtain improved estimates of confusion-matrices (as measured by the Frobenius Norm between the estimated and target matrices), but these were not used to improve ASR. Here, we used NMF to estimate the set of discrete probabilities associated with the states 1, 2 and 3 of the metamodel of Figure 3. Note that the set associated with state 2 is the same as a row of a confusion-matrix, and the sets associated with states 1 and 3 represent the probabilities of insertion of phonemes before and after the phoneme, respectively. For the states 1 and 3, the transitions a_{11} and a_{31} were set to zero for simplicity. Note that all transition probabilities are estimated by counting of phoneme occurrences.

3. Speech Data and Baseline Recogniser

The Wall Street Journal (WSJ) database was used to build the baseline speech recogniser. The training set consisted of the WSJ data from 92 speakers in set si_{fr}. This was used to construct 45 monophone acoustic models. The models were standard three-state left-to-right topology with eight mixture components per state. The front-end used 12 MFCCs plus energy plus delta and acceleration coefficients.

For the NMF experiments, the training-speakers S_i for V (see Section 2.2.1) consisted of 85 speakers from the si_{fr} set, which were also used to estimate \mathbf{CM}^y. 10 test-speakers S_i for V were selected from the set si_{alt} of the same database. Note that from the training-speakers, only target confusion-matrices \mathbf{CM}^y were estimated. For the test-speakers, partial \mathbf{CM}_{ij} and target \mathbf{CM} confusion-matrices were estimated in order to evaluate the quality of the NMF estimates of \mathbf{CM}^y.

Supervised Maximum Likelihood Linear Regression (MLLR) adaptation [8] was implemented using the same sets of utterances U selected for confusion-matrix estimation. A regression class tree with 32 terminal nodes was used for this purpose. As shown in Table 1, the mean number of MLLR transformations increased as more utterances were used. The adapted acoustic models represent the baseline for our experiments.

<table>
<thead>
<tr>
<th>Adaptation Data (U)</th>
<th>Mean Transformations</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>20</td>
<td>11</td>
</tr>
<tr>
<td>30</td>
<td>12</td>
</tr>
</tbody>
</table>

A word-bigram language model, estimated from the data of the si_{fr} speakers, was used to obtain P^*_{WB} and estimate \mathbf{CM}^y with the unadapted baseline. In order to keep these sequences independent from those of the test-set speakers, the word-bigram language model used to decode P^*_{WB} for \mathbf{CM}^y and \mathbf{CM}_{ij}, was estimated from the data of the selected test-speakers of the si_{alt} set. In all cases, a grammar scale factor sw_{WB} of 10 was used. The metamodels were tested using all the utterances available from the speakers S_i.

4. Results

4.1. Effect of Smoothing on the NMF Estimates

We were interested to see whether the improvements in the estimates of confusion-matrices reported in gain in [3] came merely from the simple smoothing procedure rather than the NMF. To analyse these factors separately, the estimates of \mathbf{CM}^y (\mathbf{CM}^z) were obtained by using (1) the smoothing only, (2) the NMF procedure only, and (3) the NMF procedure plus the smoothing as described in [3]. Figure 4 shows the squared difference $D(\mathbf{CM}^y, \mathbf{CM}^z)$ computed for the confusion-matrices estimated as described above. In addition, the difference obtained when \mathbf{CM}_{ij} is used as an estimate of \mathbf{CM}^y is plotted. The minimum error for the test speakers using the NMF procedure was obtained when r varied within the range $[10, 30]$. Although the smoothing-only estimate is always better than the estimates made only from partial data, it is much worse than both the NMF-only and the NMF + Smoothing estimates when low number of adaptation utterances are used. When enough data is available for estimation (e.g., $U = 30$), all the estimates converge to approximately the same error.
A factorial analysis was made to determine how the NMF and smoothing interacted. Two factors were considered: (1) the smoothing ("1" if it is implemented, "0" otherwise), and (2) the NMF estimation process ("1" if it is implemented, "0" otherwise). Table 2 shows the scaled mean squared difference across all test-speakers for each set of conditions. When no smoothing is done, the NMF-only estimates show a mean difference of 0.276. However when the smoothing is included, this difference only falls to just 0.253. Smoothing, without NMF, reaches 0.508, which is almost two times the difference of the NMF-only estimates. The effect of the smoothing is a reduction of the NMF difference by only 0.276 - 0.253 = 0.023, which we conclude is probably not significant.

Table 2: Mean squared difference across all test-speakers and all U sets under conditions for NMF and smoothing. Mean value ×100

<table>
<thead>
<tr>
<th>Smoothing</th>
<th>NMF=0</th>
<th>NMF=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.100</td>
<td>0.276</td>
</tr>
<tr>
<td>1</td>
<td>0.508</td>
<td>0.253</td>
</tr>
</tbody>
</table>

4.2. NMF Estimates on the Metamodels

Figure 5 shows the performance of the metamodels using MLLR adapted acoustic models. The metamodels trained with partial estimates improved over the adapted baseline, something that was not achieved on “normal” speech in previous work. When the NMF+Smoothing estimates were used, the accuracy of the metamodels improved when the training data was small. These improvements were statistically significant when five and ten utterances were used for training/estimation. The metamodels trained with the smoothing-only estimates, although not better, produced a very similar improvement.

5. Discussion and Future Work

In this work, we have consolidated our work on the use of error modelling to increase recognition accuracy. Our previous work showed that the “metamodels” approach was highly effective for improving recognition accuracy on dysarthric speech, and this work demonstrates that it can also outperform a standard adaptation technique such as MLLR on normal speakers when a more sophisticated training procedure is used for training the metamodels. A key point for future research is to refine the meta-modelling to handle deletion errors better, as these can affect the performance of the metamodels severely.

We have also investigated the use of non-negative matrix factorisation (NMF) and simple smoothing to obtain improved estimates of a speaker’s confusion-matrix when only sparse training data is available. We have found that this approach leads to small but statistically significantly increases of performance of our technique when the amount of data available for estimation is low (five and ten utterances). Although NMF produced better estimates of the confusion matrices than those obtained using a simple smoothing technique, the recognition performance from metamodels trained on data using the two techniques was not statistically significantly different. Our next step is to attempt to integrate the sparse estimation techniques described here with the use of weighted finite state transducers (WFSTs) for error correction, and to explore alternative smoothing techniques. Measure of improvement when using other adaptation techniques (e.g., MAP) will also be studied.

6. References