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Abstract 
 This paper presents a new voice morphing method which 
focuses on the continuity of phonological identity overall 
inter- and extra-polated regions.  Main features of the method 
are 1) to separate the characteristic of vocal tract area reso-
nances from that of vocal cord waves by using AR-HMM 
analysis of speech, 2) interpolation in a log vocal tract area 
function domain and 3) independent morphing for the vocal 
tract resonances and vocal cord wave characteristics.  By the 
morphing system constructed on a statistical conversion me-
thod, the continuity of formants and perceptual difference 
between a conventional method and the proposed method are 
confirmed.
Index Terms: morphing voice, phonological continuity, 
speech synthesis, inter- and extra-polation 

1. Introduction 
Voice morphing is a technique for continuously modifying a 
source speaker’s speech to a target speaker’s, whereas voice 
conversion usually means transformation from a source speak-
er’s speech to a target speaker’s. Therefore, in voice morphing, 
the interpolated voice is required to maintain phonological 
identity even between the two speakers’ utterances. The pre-
sent research focuses on this aspect of phonological continuity 
in the overall interpolated section and also that of an extrapo-
lated region, since that will be useful for such applications as 
creation of peculiar voices in animation films.   
     Since 1990s, many techniques for voice conversion are 
proposed[1-7]. One successful technique is to use a statistical 
method for mapping from a source speaker’s voice to a target 
speaker’s in the cepstrum domain[2,3].  However, weakness of 
this type of methods is discontinuity of formants because the 
relationship between formant transitions and the time pattern 
of the power spectral envelope sequence is nonlinear, that is, 
continuous interpolation of log power spectra (i.e. cepstra) 
does not result in continuous formant transitions. For example, 
when one power spectrum has a peak (formant) f1a and the 
other has a peak f1b, the interpolated spectrum mediated be-
tween the two will have two weak peaks f1a and f1b.  This type 
of characteristics will result in a deterioration of the phono-
logical quality.  Some improved methods have been proposed 
to counter this deterioration [5,6], for example, to employ line 
spectrum frequencies (LSF) for the interpolated features. 
     In this paper, we employ an estimated vocal tract area 
function to avoid such weakness. As is well known[8,9], 
PARCOR coefficients can be considered as reflection coeffi-
cients of a vocal tract area function, and the local peaks of 
power spectrum envelopes of vocal tract area functions have a 
flat level in the certain frequency band for vowels [10]. Also, 
the number of the coefficients refers to the number of the 
poles contained in the power spectrum, i. e., formants. Based 
on these restrictions, interpolation in the vocal tract area do-

main is considered to provide reasonably continuous transition 
of formants. 
     Estimation of the vocal tract area function means simul-
taneous estimation of the voice source characteristics. For 
this purpose we introduce AR-HMM(Auto-Regressive Hid-
den Markov Model) analysis of speech, which has been 
proposed for improved AR-modeling of speech[11]. AR-
HMM represents the vocal tract resonance characteristics 
by an AR model and the vocal cord wave by an HMM. It 
has been confirmed previously that using AR-HMM analy-
sis, vocal tract spectrum envelopes can be precisely esti-
mated, even for a speech wave with a high fundamental 
frequency.  
     The proposed voice morphing system introduces the log 
vocal tract area functions and a cepstrum sequence of vocal 
cord wave as feature parameters of the inter- and extra-
polations, based on a statistical conversion method[2,3].  
The feature parameters are then converted to cepstra, and 
finally output speech wave is synthesized by the synthesis-
by-analysis software package STRAIGHT[12]. In this sys-
tem, therefore, vocal tract characteristics and vocal cord 
characteristics are processed independently to obtain inter- 
and extra-polations. 
     We show that the interpolated spectral envelops are rea-
sonable with regard to continuous transition of formants and 
the extrapolated spectral envelops are substantially different 
from those obtained from the cepstrum domain. Also we 
confirm that the difference can be perceptually recognized. 

2. Proposed Method 

2.1. AR-HMM analysis 
As described above, the AR-HMM analysis estimates the vo-
cal tract resonance characteristics and vocal source waves in a 
sense of maximal likelihood estimation. Therefore, compo-
nents of the vocal tract resonance characteristics and those of 
the source waves can be naturally separated. 

  The AR-HMM represents the vocal tract characteristics by 
an AR model and the vocal cord wave by a Hidden Markov 
Model(HMM).   Fig.1 depicts the AR-HMM model structure. 

�

�
Fig. 1: Schematic diagram of AR-HMM for speech analysis. 
�

   Conventional AR estimation assumes that the glottal source 
wave has a Gaussian distribution. This assumption however 
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can become invalid, especially when analyzing speech with a 
high fundamental frequency, such as that of some female 
speakers. On the contrary, in the AR-HMM estimation, the 
vocal cord HMM and the vocal tract AR model are alternately 
estimated using the maximum likelihood method. AR-HMM 
can estimate the vocal tract features without being biased by 
pitch harmonics. In addition, since the HMM used here adopts 
an assumption of the ring-states for the glottal source wave, 
the estimated glottal source can be regarded as an approxima-
tion of the vocal cord wave. Fig.2 shows an example of AR-
HMM analysis results. �

�
Fig. 2: An example of the results ogAR-HMM analysis: origi-
nal signal (top), log power spectrum estimated by AR-HMM 
(middle), vocal cord wave estimated by AR-HMM (bottom). 
The order of AR coefficients is 19, and the  number of HMM 
states is 15 
.

2.2. Estimation of vocal tract area function 
The power spectrum was calculated from AR Coefficient with 
AR-HMM analysis, and reflection coefficients (PARCOR)

niki �,2,1, �  of the vocal tract area function was derived 
from autocorrelation coefficients obtained by IDFT of the 
power spectrum. In this paper, before analysis with AR-HMM, 
a first order adaptive inverse filtering was used for equaliza-
tion of formants[10]. 

 The vocal tract area function )1,,2,1( �� niAi � was calcu-
lated by 
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    Then, we normalized the vocal tract area functions by di-
viding by sum of the vocal tract area functions. Finally, we 
used log normalized vocal tract area functions, in order to 
prevent vocal tract area functions to become negative, and AR 
coefficients to be unstable. 
    By linear interpolation in vocal tract area functions do-

main, formant is expected to be a continuous transition. This is 
confirmed by Fig.3, where two spectra transitions are shown: 
one is a linear interpolation in cepstrum domain and the other 
is that in vocal tract area function domain.  It is obvious that 
the formant transitions are continuous in the left side, i.e., in 
the vocal tract area function domain.

2.3. Conversion function 
The voice conversion technique used in the system is statis-

tical mapping from a source speaker’s voice to a target speak-

er’s. The conversion function is represented by Gaussian Mix-
ture Model (GMM).

Fig.3: An example of linear interpolation: power spectra se-
quence obtained using 40 cepstrum coefficients(left),  and that  
using  log vocal tract area functions(right).

 Let us denote the vector analyzed from source speaker’s 
speech by x, and the corresponding vector analyzed from tar-
get speaker’s speech by y. The conversion function )(xF  is 
given  as follows. 
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i� denotes mean vector of ith Gaussian model esti-

mated from x and y . xx
i� denotes covariance matrix of ith

Gaussian model estimated from x . yx
i� is cross-covariance 

matrix. 
As described in [#], GMM-based estimation of conversion function 

uses a set of time-aligned x and y , TTT yx ][�z  to estimate the 
parameters of a joint model of Gaussian mixtures. Once the model 
has been trained, the density of x and y is given by the follow-
ing.
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� In this paper, the vocal tract characteristics is converted in 
log vocal tract area functions domain, and the vocal cord wave 
characteristics is converted in cepstrum domain. 

2.4. Re-synthesis of converted voice 
The system overview of voice conversion process is shown 
in Fig. 4, where the system consists of a training phase and 
conversion phase. The procedure of each phase is as fol-
lows: 
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Training phase: 
1) AR-HMM analysis: Speech samples with the same pho-

netic content from both source and target speaker are 
analyzed, to estimate the AR coefficients for the vocal 
tract features and the vocal cord wave for the vocal cord 
features. The AR coefficients are transformed to log vo-
cal tract area functions. The vocal cord wave is trans-
formed to cepstra. 

2) Feature alignment: The feature vectors obtained above 
are time-aligned using dynamic time warping (DTW) in 
order to compensate for any difference in duration be-
tween source and target utterances. 

3) Estimation of the conversion function: The aligned vec-
tors are used to train a joint GMM whose parameters 
then build a stochastic conversion function. The conver-
sion function for the vocal tract features and the conver-
sion function for the vocal cord features are estimated 
independently. 

Fig. 4  Block diagram of the voice conversion system. 

Conversion and morphing phase: 
1) AR-HMM Analysis: As in training phase, the vocal tract 

and the vocal cord features are estimated using an AR-
HMM, but in this case only the source speaker’s utter-
ances are used. 

2) Features Transformation: The GMM-based transforma-
tion functions built during training is now used for con-
verting every source log vocal tract area functions and 
vocal cord cepstrum into its most likely target equivalent.

3) Resynthesis: The features of morphed speech are ob-
tained from )()1( xx F�� �� , where x denotes original 
source features, and )(xF  is the converted features ob-
tained using the conversion functions. � denotes morph-
ing rate. The vocal tract features and the vocal cord fea-
tures are interpolated independently. The PARCOR coef-
ficients are obtained from the converted log vocal tract 

area functions, and the vocal tract cepstrum is obtained 
from these via power spectrum. We combained this cep-
strum and the converted vocal cord cepstrum, and syn-
thesized the morphed speech with STRAIGHT.

The method of pitch modification is conversion of average of 
log fundamental frequencies. 

00 ' ff
x

y ��
�
�

where 0f , '0f denote  log fundamental frequencies of before-
conversion and after-conversion, and x� , x� are the mean log 
pitch of  source and target speakers, respectively.

3. Experiments 

3.1. Experimental condition 
The speech sample set used for the voice morphing contained 
50 sentences in Japanese, each uttered by two male and two 
female speakers. The sampling frequency was 16[kHz] and the 
average duration of the sentence samples was 4.7[sec]. Forty-
five sentences were used for the training of the conversion 
functions; five sentences were used for the synthesis of the 
morphed speech. The number of mixtures of GMM for the 
conversion function was 64. The following three types of fea-
tures were compared: 

(a) Conventional LPC analysis coefficients, order of 19. 
(b) 40 cepstrum coefficients calculated from the AR coef-
ficients, and 40 cepstrum coefficients calculated from the 
vocal cord wave, both estimated by AR-HMM analysis. 
(c) Log vocal tract area functions (order of 19) and 40 cep-
strum coefficients calculated from the vocal cord wave, 
both estimated by AR-HMM analysis. 

    The morphed speech was synthesized by using features (a), 
(b), and (c), changing the morphing rate. Three combinations 
of source and target speakers were used: male to male, female 
to female, and male to female. 

3.2. Evaluation of conversion quality 
In order to evaluate conversion quality, we compared tar-

get speaker’s original speeches and synthesized morphed 
speeches when morphing rate was 100%, using a log power 
spectral distortion measure. The results are shown in Table 
1.

Table.1  Spectral distortions average of all speakers’ com-
binations: (a)conventional LPC only, (b) cepstra calculated 
from AR coefficients and vocal cord waves by AR-HMM 
analysis, and  (c)cepstra calculated from log vocal tract 
area functions and vocal cord waves by AR-HMM analysis. 
(c)-1and (c)-2 respectively indicate the vocal tract features 
and the vocal cord features only in (c). (p)morphing rate 
0% and  (q)morphing rate 100%.

 (p)0%[dB] (q)100%[dB] (q)-(p)[dB] 
(a) 7.23 6.24 -1.00 
(b) 7.15 5.77 -1.38 
(c) 7.28 5.90 -1.38 
(c)-1 7.28 6.35 -0.93 
(c)-2 7.28 6.86 -0.42 
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     It can be observed that (b), (c) resulted in a slightly larger 
range of reduction of the distances than (a), showing that the 
speech produced by independent conversions with AR-HMM 
is closer to the original target speaker’s speech than the speech 
produced by conversions with only LPC. Also, using log vocal 
tract area functions for conversion results in similar conver-
sion quality as arises from using the cepstrum. 

3.3.       Observation of the formant transitions 
We observed the formant transitions associated with changes 
in the morphing rate by synthetic morphed speech. Fig. 5 
shows the change patterns of the power spectrum for the same 
analysis frame of the morphed speech, when morphing rates 
changed from 0% to 100% to 10% each time. In the case of 
interpolation in the cepstrum domain, it can be seen that the 
positions of the formants were unchanged. Hence when 
morphing rate is 50%, the formants appear in mixed positions 
of 0%-morphing formants and 100%-morphing formants. In 
contrast, for the case of the interpolation of the log vocal tract 
area function, it can be seen that the positions of the formants 
are continuously changed according to the morphing rate. 

Fig.5  Changes in the power spectrum, when morphing 
rates changed from 0% to 100%: interpolation in the cep-
strum domain(left), and  interpolation in the log vocal tract 
area function(right).

      In addition, we investigated the cases for the extrapola-
tion. Fig. 6 shows the changes of the power spectrum when 
morphing rates change from -100% to 200% in the rate of 
10%. From this figure, it can be found that the extrapolation 
in the cepstrum domain just enhances or dehances local 
peaks (formants) without changing their positions, whereas 
that obtained in log vocal tract area moves formant posi-
tions.  Therefore, their voice quality will be different in 
each other.
     We have conducted a preliminary listening test for this 
difference, and confirmed that the difference between the 
morphing speeches in the cepstrum domain and those in the 
log vocal tract area function domain can be clearly recog-
nized in the case of near 200% morphing rate.  

4. Conclusion 
We have proposed a novel method for voice morphing, where 
characteristics of vocal tract resonances and those of vocal 
cords can be independently modified and formants are con-
tinuously changing by inter- and extra-polations in the log 
vocal tract area function domain.  These features have been 
realized by using the AR-HMM analysis of speech. The feasi-
bility of the method has been reasonably confirmed by observ-
ing spectral changing patterns in a continuous rate of morph-

ing, and conducting a preliminary listening test in case of 
extrapolative morphing. 
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Fig.5: Changes in the power spectrum, when morphing 
rates varied between -100% to 200%: interpolation in the 
cepstrum domain(left), and interpolation in the log vocal 
tract area function(right).
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