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Abstract
Two primary sources of variability that degrade accuracy in
speech recognition systems are the speaker and the environ-
ment. While many algorithms for speaker or environment adap-
tation have been proposed to improve performance, far less at-
tention has been paid to approaches which address for both
factors. In this paper, we present a method for compensating
for speaker and environmental mismatch using a cascade of
CMLLR transforms. The proposed approach enables speaker
transforms estimated in one environment to be effectively ap-
plied to speech from the same user in a different environ-
ment. This approach can be further improved using a new train-
ing method called speaker and environment adaptive training
method. When applying speaker transforms to new environ-
ments, the proposed approach results in a 13% relative improve-
ment over conventional CMLLR.
Index Terms: speaker adaptation, environment adaptation, ro-
bustness, factored transforms

1. Introduction
The performance of speech recognition systems degrades when
there is mismatch between the acoustic models of the recog-
nizer and the speech seen in deployment. Two primary sources
of this mismatch are the speaker and the environment. One way
in which this mismatch can be mitigated is to adapt the acoustic
models to the current conditions. While many algorithms for
speaker or environmental adaptation have been proposed, e.g.
[1, 2], far less attention has been paid to approaches which ad-
dress both factors. Nevertheless, it would be advantageous to
be able to adapt a recognizer to the speaker and environment
in a way allows these sources of variability to be separated. For
example, transforms estimated for speaker adaptation in one en-
vironment could be applied to speech from the same speaker in
a new environment.

A method of joint environment and speaker adaptation was
proposed in which Jacobian adaptation for noise compensation
was combined with MLLR for speaker adaptation [3]. This ap-
proach was recently improved by using Vector Taylor Series
(VTS) adaptation to update both the means and variances of
MLLR-compensated acoustic models [4]. The VTS noise pa-
rameters and the MLLR transforms were jointly estimated us-
ing an iterative approach. By combining methods that use dif-
ferent adaptation strategies improved separation of the speaker
parameters and the environmental parameters can be achieved.
This separation was called acoustic factorization in [5]. In this
work, a product of MLLR transforms was proposed where one
transform captured the environmental variability and one cap-
tured the speaker variability. The environmental transform was

estimated using a cluster-adaptive training approach and the
speaker transform was estimated with conventional MLLR.

In this paper, we present a method for compensating for
speaker and environmental mismatch using a cascade of CM-
LLR transforms. Because this cascade of transforms is itself a
CMLLR transform, we refer to it as a factored transform. We
propose a method for estimating factored transforms in order
to identify the two constituent transforms that best capture the
speaker and environmental variability in the adaptation data.
The goal of this work is to estimate speaker transforms that
can be applied to speech from the same speaker in a different
environment. We believe there are several benefits to the pro-
posed approach. First, because both transforms are estimated
using a data-driven approach, no assumptions about the un-
derly acoustic model or features have to be made, unlike VTS,
which assumes a clean acoustic model trained using mel cep-
stral or similar features. The proposed method can use any fea-
tures and acoustic model. In addition, using linear transforms
makes the use of adaptive training straightforward and does not
require the more complicated and computationally-expensive
noise-adaptive training approaches recently proposed [6, 7]. Fi-
nally, the proposed approach is more efficient than the MLLR
approach in [5], as CMLLR can be implemented using a trans-
formation of the features rather than the model parameters.

The remainder of this paper is organized as follows. In Sec-
tion 2, we introduce the concept of factored transforms. Section
3 shows how these transforms can be estimated from adaptation
data or training data. Adaptive training using the proposed fac-
tored transforms is discussed in Section 4. Finally, experiments
to evaluate the performance of the proposed approach are de-
scribed in Section 5 and some concluding remarks are made in
Section 6.

2. Factored transforms
The basis of the adaptation in this work is Constrained MLLR
(CMLLR) which applies the same linear transform to both the
Gaussian means and variances. The advantage of CMLLR is
that it can be implemented as a feature transform which means
that no changes to the acoustic models are required at runtime
if only a global transformation is used. If regression classes
are used, then the determinant of the transform needs to be
accounted for when computing acoustic likelihoods. In con-
ventional CMLLR, the features are transformed using a linear
transform as

y = Ax + b (1)

Let’s assume that there exists a linear transform that com-
pensates for environmental variability W𝑒 = {A𝑒,b𝑒} and
a second transform that compensates for speaker variability
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W𝑠 = {A𝑠,b𝑠}. Applying these in succession leads to

y = A𝑠(A𝑒x + b𝑒) + b𝑠 (2)

It is straightforward to show that this is equivalent to
a single transform y = A′x + b′ where A′ = A𝑠A𝑒 and
b′ = A𝑠b𝑒 + b𝑠. The speaker and environment transforms
can also be applied in the reverse order (speaker transform first).
This is an equivalent representation though obviously the trans-
forms learned will be different as the relationship is not com-
mutative.

3. Estimating the transforms
Let us assume that adaptation data exists from many speakers
in one or more different environments. Let Λ𝑆 be the set of
speaker transforms for 𝑆 different speakers in the data. Simi-
larly, let Λ𝐸 be the set of environmental transforms for the 𝐸
different environments in the data. Note that while the definition
of a “speaker” is clear and well-defined, the definition of “en-
vironment” is less so. It can be defined by the noise type that
corrupts the speech, some combination of noise and SNR, or
some alternate definition. Given this adaptation data, the goal
is to estimate the set of transforms (Λ𝐸 ,Λ𝑆) by maximizing
the likelihood of the data. If we define 𝑖, 𝑡, and 𝑘 as the in-
dices for the utterance, the frame and the Gaussian component,
respectively, we can the write the following auxiliary function

𝒬(Λ𝐸 ,Λ𝑆) =
∑

𝑖,𝑡,𝑘

𝛾
(𝑖)
𝑡𝑘 log(𝑝(y

(𝑖)
𝑡 ∣𝑘)) (3)

where y
(𝑖)
𝑡 is defined according to (2) and 𝑝(y

(𝑖)
𝑡 ∣𝑘)) is a Gaus-

sian distribution with mean 𝝁𝑘 and covariance matrix Σ𝑘.
Obviously, any linear transform defined in (1) can be arbi-

trarily factored into two transforms as in (2). Thus, without
additional considerations, it is impossible to have one trans-
form capture environmental variability while the other captures
speaker variability. Thus, we make some assumptions about the
nature of the adaptation data. First, we assume that we know
the identity of the environment and the speaker in each utter-
ance. In addition, we assume that there is a significant diversity
of speakers in each environment of interest.

Both of these assumptions are realistic in many practical
applications. For example, it is reasonable assume the environ-
ment of many “situated” systems such as an in-car voice control
system or a living room game console. In addition, the speaker
identity can be determined using a device code, caller ID on a
phone, or a user login. Using these assumptions, each of the
transforms in (Λ𝐸 ,Λ𝑆) is optimized using a distinct (but over-
lapping) set of data.

3.1. Optimizing the speaker transforms

To optimize a particular speaker transform for speaker 𝑠, we
define 𝑖𝑠 as the index over all utterances from that speaker and
rewrite the auxiliary function as

𝒬(W𝑠,W̄𝑠, Λ̄𝐸) =
∑

𝑖𝑠,𝑡,𝑘

𝛾
(𝑖𝑠)
𝑡𝑘 log(𝑝(y

(𝑖𝑠)
𝑡 ∣𝑘)) (4)

Throughout this paper, a bar on top of a variable, e.g. Ā, repre-
sents the current estimate of that variable. Under this objective
function, y𝑡 can be written as

y𝑡 =A𝑠(Ā𝑒(𝑖𝑠)x
(𝑖𝑠)
𝑡 + b̄𝑒(𝑖𝑠)) + b𝑠 (5)

=A𝑠x̄
(𝑖𝑠)
𝑒,𝑡 + b𝑠 (6)

where 𝑒(𝑖𝑠) is the environment for the utterance 𝑖𝑠 and x̄
(𝑖𝑠)
𝑒,𝑡 is

the observation with the transform for environment 𝑒 applied.
Thus, the log probability in (4) can be written as

log(𝑝(y
(𝑖𝑠)
𝑡 ∣𝑘)) = log(∣Σ𝑘∣) − log(∣A𝑠)∣2)+

(A𝑠x̄
(𝑖𝑠)
𝑒,𝑡 + b𝑠 − 𝝁𝑘)𝑇 Σ−1

𝑘 (A𝑠x̄
(𝑖𝑠)
𝑒,𝑡 + b𝑠 − 𝝁𝑘) (7)

Clearly, the auxiliary function in (4) is equivalent to that of con-
ventional CMLLR where the observations are replaced by the
environmental-transformed features and the standard row-by-
row optimization procedure can be employed [1].

3.2. Optimizing the environment transforms

In order to update the environmental transforms, we define an
index 𝑖𝑒 that indexes all utterances from a common environ-
ment. We then define a similar objective function to (4) for a
set of environmental transforms using the following auxiliary
function.

𝒬(W𝑒,W̄𝑒, Λ̄𝑆) =
∑

𝑖𝑒,𝑡,𝑘

𝛾
(𝑖𝑒)
𝑡𝑘 log(𝑝(y

(𝑖𝑒)
𝑡 ∣𝑘)) (8)

This is similar to (4) except that the set of utterances is different
and the speaker transforms are now assumed fixed. In this case,

y
(𝑖𝑒)
𝑡 = Ā𝑠(𝑖𝑒)(A𝑒x

(𝑖𝑒)
𝑡 + b𝑒) + b̄𝑠(𝑖𝑒) (9)

where 𝑠(𝑖𝑒) is the speaker for utterance 𝑖𝑒. The log probability
in (8) can be then be expressed as

log(𝑝(y
(𝑖𝑒)
𝑡 ∣𝑘)) = log(∣Σ𝑘∣) − log(∣Ā𝑠)∣2) − log(∣A𝑒∣2)+

(y
(𝑖𝑒)
𝑡 − 𝝁𝑘)𝑇 Σ−1

𝑘 (y
(𝑖𝑒)
𝑡 − 𝝁𝑘) (10)

Substituting (9) into (10) and rearranging terms gives

log(𝑝(y
(𝑖𝑒)
𝑡 ∣𝑘)) = log(∣Σ̄𝑘,𝑠(𝑖𝑒)∣) − log(∣A𝑒∣2)+
(x

(𝑖𝑒)
𝑒,𝑡 − �̄�𝑘,𝑠(𝑖𝑒))

𝑇 Σ̄
−1
𝑘,𝑠(𝑖𝑒)(x

(𝑖𝑒)
𝑒,𝑡 − 𝝁𝑘,𝑠(𝑖𝑒)) (11)

where

x
(𝑖𝑒)
𝑒,𝑡 = A𝑒x

(𝑖𝑒)
𝑡 + b𝑒 (12)

�̄�𝑘,𝑠(𝑖𝑒) = Ā−1
𝑠(𝑖𝑒)(𝝁𝑘 − Ā𝑠(𝑖𝑒)b̄𝑠(𝑖𝑒)) (13)

Σ̄𝑘,𝑠(𝑖𝑒) = Ā−1
𝑠(𝑖𝑒)Σ𝑘Ā

−1,𝑇
𝑠(𝑖𝑒) (14)

By substituting (11) – (14) into (8), we can see that optimizing
the environmental transforms is equivalent to performing CM-
LLR with adapted Gaussian parameters given by (13) and (14).
Note that the adapted covariances have the same stucture as the
speaker transforms. If the transforms are full matrices, then
so are the covariance matrices. In this case, the standard row-
by-row optimization cannot be performed and other techniques
must be used.

3.3. Jointly optimizing the speaker and environmental
transforms

Because there is no closed-form for solution to optimizing the
full set of transforms jointly, the speaker and environmental
transforms are optimized alternately. After choosing initial val-
ues for the transforms, the environment transforms are esti-
mated while the speaker transforms are fixed, and then vice
versa. This process can be repeated for a fixed number of it-
erations or until the likelihood of the adaptation data converges.

In this work, the following recipe was used:
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1. Initialize the transforms. All A matrices were initial-
ize to identity and all offset vectors b were initialized to
zero.

2. Fix speaker transforms Λ𝑆 and optimize W𝑒 for each
environment 𝑒 = {1, . . . , 𝐸}.

3. Fix environmental transforms Λ𝐸 and optimize the
speaker transforms W𝑠, 𝑠 = {1, . . . , 𝑆}.

4. If more iterations desired, go to step 2.

In this work, we performed a single iteration of this joint
optimization and used full matrices for all transforms. Because
we chose to start with the optimization of the environmental
transforms with the speaker transforms initialized to A𝑠 = I
and b𝑠 = 0, the environment transforms could be optimized
with conventional CMLLR with a diagonal covariance Gaus-
sians, rather than the full covariances indicated by (14). If a
second iteration were to be performed full-covariance optimiza-
tion would be required.

4. Speaker and Environment Adaptive
Training

Because both the environment and speaker transforms are linear
operations on the features, performing adaptive training [8] is
quite straightforward. To do so, we simply add the set of HMM
parameters Λ𝑋 to the auxiliary function in (3),

𝒬(Λ𝑋 ,Λ𝐸 ,Λ𝑆) =
∑

𝑖,𝑡,𝑘

𝛾
(𝑖)
𝑡𝑘 log(𝒩 (y

(𝑖)
𝑡 , 𝝁𝑘,Σ𝑘)) (15)

As in the recipe in Section 3.3, the speaker transforms, environ-
ment transforms, and acoustic model parameters are each opti-
mized in succession while the other parameters are held fixed.
To update the acoustic model parameters, the speaker and en-
vironment transforms are combined into a single linear trans-
form (depending on the speaker and the environment of the
utterance) and then the acoustic model parameters can be up-
dated using the transformed features. In contrast to traditional
speaker adaptive training (SAT), we are explicitly updating sep-
arate transforms that account for speaker variability and envi-
ronmental variability. As a result, we refer to this training as
Speaker and Environment Adaptive Training (SEAT).

5. Experiments and Results
In order to evaluate the proposed method for adaptation using
factored transforms, a series of experiments were performed us-
ing the Aurora 2 corpus [9]. Aurora 2 consists of data degraded
with eight types of noise at SNRs between 0 dB and 20 dB.
Evaluation is performed using three test sets that contain noise
types seen in the training data (Set A), unseen in the training
data (Set B), and additive noise plus channel distortion (Set C).
There are 110 speakers in the training set and 104 speakers in
the test set with no overlap between the two sets. In this work,
our evaluation is limited to Set A.

The acoustic models were trained from the multi-condition
training set using HTK with the “complex back end” recipe. An
HMM with 16 states per digit and 20 Gaussians per state is cre-
ated for each digit as a whole word model. There is a three-state
silence model with 36 Gaussians per state and a one state short
pause model tied to the middle state of silence. Standard 39-
dimensional MFCC features consisting of 13 static, delta, and
delta-delta features were computed from power spectral obser-
vations and C0 was used instead of log energy. The baseline

Table 1: Word accuracy for Set A using batch unsupervised
CMLLR for each combination of speaker + environment

Set A N1 N2 N3 N4 Avg
Clean 99.60 99.58 99.58 99.63 99.60
20 dB 99.60 99.33 99.64 99.48 99.51
15 dB 99.29 99.06 99.25 99.07 99.17
10 dB 98.10 98.46 98.21 97.75 98.13
5 dB 95.79 94.74 93.95 93.12 94.40
0 dB 84.31 76.42 69.85 79.94 77.63
-5 dB 44.46 33.74 24.84 39.93 35.74
Avg 95.42 93.60 92.18 93.87 93.77

system included cepstral mean normalization (CMN) and had a
word accuracy on Set A of 92.70%.

The experiments performed were designed to test the abil-
ity of the proposed factored transform approach to separate the
speaker and environmental variability. This was done by esti-
mating the speaker transforms from speech in one environment
and evaluating their effectiveness when applied to speech from
the same speaker in different environments. In all experiments,
the environment was defined by the type of noise, regardless, of
SNR. Thus, in the training data and Set A, there are four envi-
ronments. These will be referred to as N1-N4, and correspond
to subway, babble, car, and exhibition hall, respectively.

In the first experiment, we sought to establish the up-
per bound in performance using unsupervised CMLLR adap-
tation to jointly compensate for the combined effects of speaker
and environment mismatch. To do so, we estimated a single
CMLLR transform for each speaker+environment combination.
Each of the four environments in Set A contains speech at 7
different SNRs (including clean speech). There are 100 speak-
ers with 10 utterances per speaker per SNR which means that
70 utterances per speaker were used for adaptation. Using this
data, a single CMLLR transform was estimated using the hy-
pothesized transcriptions from the baseline CMN system. The
utterances were then re-recognized after applying the estimated
transforms. The results are shown in Table 1. This unsuper-
vised batch adaptation using CMLLR results in 93.77% word
accuracy, which represents a 14.6% relative reduction in word
error rate from the baseline CMN system. This represents an
upper bound on performance using batch adaptation with CM-
LLR where a transform is learned for each speaker + environ-
ment combination.

To evaluate the “portability” of conventional CMLLR trans-
forms, the transforms estimated in the previous experiment for
each speaker in environment N1 (subway) were applied to the
utterances from the same speaker in the other three environ-
ments (N2–N4). The results are shown in Table 2. The accu-
racy on the unseen environments N2–N4 is 92.11% compared to
an accuracy of 93.22% on the same environments in the previ-
ous experiment. This drop in performance reflects the fact that
the transforms estimated in environment N1 are compensating
for both the speaker and the environment. When the environ-
ment changes, the transforms are no longer optimal. Note that
in contrast to the first experiment, the recognition results for en-
vironments N2–N4 are obtained with a single recognition pass.

This experiment was then repeated using the proposed fac-
tored transform approach. In this experiment, the factored adap-
tation algorithm described in Section 3 was first applied to the
multi-condition training data. Four environmental transforms
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Table 2: Word accuracy for Set A when the CMLLR transforms
estimated in environment N1 are applied to the remaining envi-
ronments

Set A N2 N3 N4 Avg
Clean 99.52 99.64 99.60 99.59
20 dB 99.30 99.49 99.44 99.41
15 dB 99.06 99.22 98.95 99.08
10 dB 98.25 98.15 97.28 97.89
5 dB 93.77 92.96 92.32 93.02
0 dB 71.28 65.20 77.48 71.32
-5 dB 30.50 23.47 39.59 31.19
Avg 92.33 91.00 93.09 92.11

Table 3: Word accuracy for Set A obtained using the proposed
factored CMLLR transforms.

Set A N2 N3 N4 Avg
Clean 99.52 99.61 99.66 99.63
20 dB 99.33 99.64 99.60 99.61
15 dB 99.03 99.37 99.11 99.17
10 dB 98.31 98.30 97.59 98.06
5 dB 94.26 94.21 93.12 93.86
0 dB 74.58 70.50 79.17 74.74
-5 dB 32.74 25.38 38.82 32.31
Avg 93.10 92.40 93.72 93.07

were estimated (one for each of the four noise types) and 110
speaker transforms were estimated using supervised adaptation.
At test time, the first-pass unsupervised transcripts from the
baseline model were again used to estimate the speaker trans-
forms using the N1 test data only. However, this time, the en-
vironmental transform for N1 learned in training was applied
prior to estimating the speaker transforms. Then, these speaker
transforms were used in conjunction with the transforms for en-
vironments N2–N4 to recognize the test data from those envi-
ronments. As in the previous experiment, only a single recog-
nition pass was required to obtain these results. As shown in
Table 3, the recognition accuracy in the unseen environments
improves to 93.07% which is quite close to our upper bound
two-pass performance of 93.22%. These results represent a
12% relative reduction in word error rate over the conventional
CMLLR approach in the previous experiment.

Finally, the impact of adaptive training on the proposed fac-
tored adaptation algorithm was evaluated. The previous two
experiments were repeated using SAT with the conventional
speaker-specific CMLLR transforms or the proposed SEAT us-
ing the factored transforms. As before, the speaker transforms
estimated using utterances from environment N1 were applied
to speech from environments N2–N4. The results are shown in
Table 4. In both cases, the performance improves as expected.
However, compared to SAT, a 13% relative reduction of WER
is obtained by SEAT, which uses separate environmental and
speaker transforms for adaptive training.

6. Conclusion
In this paper, we have proposed a method for separating the
speaker and environmental variability using factored CMLLR
transforms. We have shown through a series of experiments

Table 4: Word accuracy on Set A using SAT and the proposed
SEAT when speaker transforms from N1 are applied to N2–N4.

Set A CMLLR F-CMLLR
N2–N4 + SAT + SEAT
Clean 99.66 99.66
20 dB 99.40 99.54
15 dB 99.03 99.23
10 dB 97.95 98.21
5 dB 93.27 94.07
0 dB 72.87 76.36
-5 dB 32.44 33.70
Avg 92.50 93.48

that by appropriate selection of the adaptation data, the pro-
posed method can estimate separate transforms for the speaker
and the environment, which enables the speaker transforms to
be effectively applied to speech from the same user in differ-
ent environments. We have also shown how this method can be
incorporated into an adaptive training strategy which generates
further improvements in performance. In the future, we plan to
further develop this approach in order to estimate the both the
environmental transforms and the speaker transforms for adap-
tation to both speakers and environments not seen in training.
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