VTLN in the MFCC Domain: Band-Limited versus Local Interpolation

Ehsan Variani†, Thomas Schaaf‡
†CLSP, Johns Hopkins University, Baltimore MD 21218, USA
‡M*Modal, Pittsburgh, USA

ABSTRACT

We propose a new easy-to-implement method to compute a Linear Transform (LT) to perform Vocal Tract Length Normalization (VTLN) on truncated Mel Frequency Cepstral Coefficients (MFCCs) normally used in distributed speech recognition. The method is based on a Local Interpolation which is independent of the Mel filter design. Local Interpolation (LILT) VTLN is theoretically and experimentally compared to a global scheme based on band-limited interpolation (BLI-VTLN) and the conventional frequency warping scheme (FFT-VTLN). Investigating the interoperability of these methods shows that the performance of LILT-VTLN is on par with FFT-VTLN and BLI-VTLN. The statistical significance test also shows that there are no significant differences between FFT-VTLN, LILT-VTLN, and BLI-VTLN, even if the models and front ends do not match.

Index Terms— Automatic speech recognition, VTLN, frequency warping, linear transform

1. INTRODUCTION

Vocal Tract Length Normalization (VTLN) improves the accuracy of automatic speech recognition (ASR) systems by reducing the effect of vocal tract length differences. To control the change of spectra, a single parameter, α, called the warping factor is estimated using the following maximum likelihood (ML) technique for each speaker [10]:

$$\alpha^* = \arg \max_{\alpha} \{ \log P_r(X^\alpha | \lambda, U_i) + \log |A^\alpha| \}$$ (1)

where X^α is the warped feature vector, λ is the HMM parameters and U_i is the i^{th} utterance. In this equation $|A^\alpha|$ is the Jacobian of the normalization which theoretically is necessary since the likelihood of the warped features is calculated with respect to the previous assumed distribution. This makes the likelihood more comparable for different warping factors. Since it is very difficult to obtain a closed-form solution for α^* in the above equation, some optimization technique is used. In practical ASR systems α is between 0.8 and 1.20 which comes from the physiological data [1].

To obtain the warped feature vector X^α, we need to implement the vocal tract length normalization in some point in the front-end path of the ASR system. Fig. 1-a shows a typical front-end of an ASR system. In this figure, the MFCC’s are given by $c = C \cdot \log(M \cdot S)$ where C is the DCT matrix, M is the matrix corresponding to the Mel filter bank, and S is the power or magnitude spectrum of the speech signal. Because of the high frequency resolution after the FFT block (usually 256 frequency points in typical ASR systems), the best point for VTLN is immediately before the Mel filter bank (FFT-VTLN, shown in Fig. 1-b). However, in applications that use distributed speech recognition (DSR) we often have no access to the features before MFCC and therefore methods that implement VTLN in the cepstral domain (shown in Fig. 1-c) are of great benefit.

To implement VTLN in the cepstral domain we need to find a transform between the unwarped cepstral coefficients, c and the warped cepstral coefficients, c^α. One could investigate the effect of frequency warping in the cepstral domain by going back through the front-end to find S as follows:

$$S = M^{-1} \cdot \exp(C^{-1} \cdot c)$$ (2)

Then by applying the warping matrix W and going forward, the warped cepstral coefficients can be obtained by:

$$c^\alpha = C \cdot \log[M \cdot W \cdot M^{-1} \cdot \exp(C^{-1} \cdot c)]$$ (3)

This nonlinear relation involves the knowledge of Mel filter bank structure and DCT transform. In addition, it requires that M and C be invertible, which is not the case in the conventional front-end.

This remainder of this paper is organized as follows. The next section will discuss the previous proposed linear transforms for VTLN, their properties and their limitations. After sketching the mathematical problem describing the effect of VTLN in the cepstral domain we will propose a new LT method in section three. Section four discusses the experimental results, and finally section five contains the concluding remarks.

2. RELATED WORK

Pitz [8] showed that the vocal tract normalization is equal to a linear transform in the cepstral space by modification in the signal pro-
cessing of the conventional front-end. McDonough [6], used the all-pass transform to derive a linear transform for VTLN (without considering DCT-II) in the continuous frequency domain which requires access to the all cepstral coefficients. Uebel [12] showed that direct frequency warping and the all-pass transform lead to similar improvements in VTLN. He used a matrix approximation technique that learns the mappings between the truncated warped cepstral features and the unwarped features. This is computationally expensive, sensitive to noise in the training data, only practical for a fixed number of warp factors, and requiring large amounts of training data.

Claes [2] proposed another VTLN transform by assuming the warping factor, \(\alpha \), is small enough to allow the approximation of the logarithm with a linear function which is only valid for warping factors close to zero. They also approximated the right inverse of the Mel-filter bank matrix. To solve the problem of non-invertibility of the Mel transform, Cui [3] approximated the Mel filter matrix and its inverse using index matrices. These are matrices in which each row contains exactly one non-zero value which is one. Assuming the warping matrix \(W \) is also an index matrix, and then plugging them into Eq. (2) they introduced the following linear transform,

\[
e^{c_l} = (C \cdot M \cdot W \cdot M^{-1} \cdot C^{-1})e
\]

(4)

Then they set this linear transform, which was derived by warping in the physical frequency domain, equal to the transform derived by warping in the Mel domain. But these two transforms are not identical because of the non-linear behavior of the logarithm [10]. Panchapagesan [7] also did this and incorporated the warping into the DCT matrix implementing the VTLN transform. Depending on the warping parameter, the index matrix approximation described in [3, 7] causes singular matrices, leading to difficulties in computing the Jacobian. In addition, they used a different configuration of the Mel filter bank during the approximation, which can result in a larger mismatch between the expected features.

Umesh [13] and Sanand [10, 9] also proposed the following linear transform,

\[
T_{[k,n]}^{\lambda l} = \frac{1}{2N} \sum_{i=0}^{2N-1} e^{-\frac{\pi}{2} l i} e^{\frac{\pi}{2} i (v_l^\alpha)} e^{\frac{\pi}{2} i (v_l^\alpha)} n \quad \text{for} \quad l \leq 1 \text{ to } N
\]

(5)

where \(v_\alpha \) is the sampling frequency in the Mel domain, \(v_l^\alpha \), and \(v_l \) denote the Mel frequencies after and before the warping, respectively, and \(N \) denotes the number of Mel filters. This transform is based on the band-limited interpolation (BLI-VTLN) for reconstructing the continuous signal from its uniformly spaced samples. The first question about this method is whether the conditions for Shannon band-limited interpolation are satisfied. The main issue is the presence of the logarithm which is not a band-limited operator and it is not clear that we could apply this theorem to its output values. In addition the interpolation uses \(2N \) points to prohibit the appearance of imaginary parts, but there is no sample point at zero frequency or at the Nyquist frequency (because there is no Mel filter at these frequencies). To solve this difficulty, Sanand [10, 1] adds half filters at these points which is not common in typical front-ends. Further it is shown in [9] that similar results could be achieved without these half filters, but this approach seems to be sensitive to noise. In addition to achieving better global interpolation and higher resolution in the frequency domain, a large number of Mel filters are used, which is different from conventional ASR systems. One of the significant advantages of this approach is its straightforward calculation of the Jacobian matrix, which is done in [10].

3. PROPOSED LINEAR TRANSFORM

In this section, we want to create a mathematical framework for understanding the effect of VTLN on the Mel filter bank coefficients after the logarithm. At this point we have \(N \) points corresponding to the \(N \) filters of the Mel filter bank. Let the mel frequency be \(v_l = 2595 \log (1 + f/700) \). The warped mel frequency is \(v_l^\alpha = 2595 \log (1 + \alpha(f)/700) \), where \(\alpha(f) \) is the warping function. Because of this non linear relation, it is clear that the warped Mel frequencies may not be equidistant. Fig. 2 illustrates this point by plotting \(v_l^\alpha \) versus the center frequencies of some Mel filter bank in the physical frequency domain.

Our math problem is finding the corresponding \(\log \)-Mel coefficients values after warping, \(m_l^\alpha \), corresponding to \(v_l^\alpha \) based on the current \(\log \)-Mel coefficients \(m_l \) corresponding to \(v_l \) where \(1 \leq l \leq N \). One idea is to use a global interpolation approach by estimating the function that goes through all previous points and using that function to find the values of \(m_l^\alpha \). Band limited interpolation, discussed in the previous section, is one possible global interpolation. However, the additional information from distant filters may hurt performance, making local interpolation preferable.

By taking a careful look at Fig. 2, we see that each warped Mel frequency is within one mel interval of the corresponding unwarped Mel frequency. This motivated the idea of local interpolation to find the value of \(m_l^\alpha \) for the corresponding \(v_l^\alpha \) in the Mel domain. The first degree of local interpolation is the linear interpolation which interpolates the output of two consecutive filters by a straight line, according to the following equation,

\[
m_l^\alpha = \lambda_i m_i + (1 - \lambda_i) m_{i+1}
\]

where \(i_j \) is the index corresponding to the Mel filter in the left side of the warped mel frequency \(v_l^\alpha \), and \(\lambda_i = (v_{i+1} - v_l^\alpha) / (v_{i+1} - v_i) \) for the first and last coefficients we always consider the two first and two last filters, respectively. By finding the parameter \(\lambda_i \) for all filters we can compute the linear transform as:

\[
T_{[k,j]}^{\lambda l} = \begin{cases}
\lambda_i & \text{for } j = i_j \\
1 - \lambda_i & \text{for } j = i_j + 1 \\
0 & \text{otherwise}
\end{cases}
\]

(7)

The final linear transform corresponding to local linear interpolation (LLI-VTLN) is given by:

\[
A^L_{N \times N} = C_{N \times N} \cdot T_{N \times N} \cdot C_{N \times N}^{-1}
\]

(8)
Fig. 3. Comparison of the log-Mel coefficients: before warping (circles), after warping (diamonds), and the estimated values by linear interpolation (crosses).

Fig. 4. The piecewise linear warping function.

Fig. 3 shows the mel coefficients of a random speech frame before warping, the estimated coefficients after warping using the interpolation, and the real values of the coefficients after warping. It is easy to see that linear interpolation tracks the real warped values very well and in some points gives even the exact same values.

The linear interpolation gives a very simple and straightforward approach for implementing vocal tract length normalization after MFCC. One of the main advantages of this technique is its independence of the configuration of the front-end, in particular the Mel filter bank. In addition, it does not use any kind of modification of the Mel filters. Additionally, the Jacobian of this matrix is relatively easy to compute and is plotted in Fig. 6. Further improvements of the local interpolation can be achieved by increasing the number of filter banks; however it is unclear if this is also beneficial for speech recognition.

4. EXPERIMENTAL DESIGN

The following experiments were designed to investigate how compatible the different VTLN methods (FFT-VTLN, LILT-VTLN, BLI-VTLN) are. In an ideal case they could be easily exchanged during training and testing without changing the Word Error Rate (WER). It should be noted that the BLI-VTLN [9] was implemented assuming half-filters since otherwise a warp of 1.0 would not result in the identity matrix. We were concerned that this would change the features in an incompatible way. The comparison between LILT-VTLN and BLI-VTLN allows us to assess how critical the interpolation method is.

All recognizers were trained from an English training set consisting of audio from read speech, Broadcast News, and medical reports; some details are given in Table 1. Read speech is an in-house database similar to Wall Street Journal, Broadcast News data is from LDC, and the medical reports is a sub-set of in-house data from various medical specialties. Since the medical reports were spoken by physicians with the intention of being transcribed by a human, the speech style was conversational, with hesitations, corrections and extremely fast speech. The acoustic conditions are also very challenging, since neither the quality of the microphone nor the environment were controlled, resulting often in rather poor audio quality with a large amount of background noise. The medical reports were recorded at 11kHz, all other data were down-sampled to 11kHz. More details can be found in [11].

Table 1. English training database.

<table>
<thead>
<tr>
<th>Audio (h)</th>
<th>Read Speech</th>
<th>Broadcast News</th>
<th>Medical Reports</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speakers</td>
<td>118</td>
<td>106</td>
<td>334</td>
<td>559</td>
</tr>
<tr>
<td></td>
<td>340</td>
<td>5238</td>
<td>212</td>
<td>5790</td>
</tr>
</tbody>
</table>

All four acoustic models in the experiments (with and without VTLN) used the same phonetic context tree with 3000 tied-states, that were Maximum Likelihood trained with a global semi-tied co-variance [4] with about 42k Gaussians. This relatively small model size was chosen to increase the expected improvements from VTLN allowing an easier comparison of the performance. In all front-ends a cepstral mean and variance normalization was performed during training and decoding. A piecewise linear warping function, Fig. 4, consisting of two linear segments mapping the zero and the Nyquist frequency to themselves with an edge at 80% was used. The Mel filter bank had 30 filters equally spaced starting after an initial gap of 125 Hz. The speaker warp factor was trained using a target model with a single Gaussian for which the warp and model were re-estimated over three iterations.

The development set used in decoding experiments consisted of nine physicians (two female) from various medical specialties with 15k running words in 37 medical reports. Decoding experiments used a single-pass decoder with a standard 3-state left-to-right HMM topology for phonemes and a single state for noises. Since the focus was on comparing the front-ends a single general medical 4-gram Language Model was used for all reports during decoding. Warp factors were estimated during an initial decoding run using a grid search from 0.8 to 1.2 with an increment of 0.01. For all test speakers the warp was between 0.9 and 1.15.

The first experiment, shown in Table 2, investigated whether the FFT-VTLN could be exchanged with a LILT-VTLN or BLI-VTLN. Assuming compatibility of the front-ends, there should be no significant change in performance and we should be able to use the warp factors found with the FFT-VTLN. For each acoustic model a fixed set of warp factors derived with the FFT-VTLN was used during this experiment. First, using VTLN gave a 5% relative error reduction which is in the normal range for VTLN. The matched pair sentence segment significance test from the NIST sclite tool showed that improvements from using VTLN were statistically significant, but did not find a significant difference between different VTLN implementations.

Table 2. Decoding without matching warp factors.

<table>
<thead>
<tr>
<th>WER Acoustic Model</th>
<th>no VTLN</th>
<th>FFT</th>
<th>BLI</th>
<th>LILT</th>
</tr>
</thead>
<tbody>
<tr>
<td>no VTLN</td>
<td>16.84%</td>
<td>16.34%</td>
<td>16.38%</td>
<td>16.28%</td>
</tr>
<tr>
<td>FFT-VTLN</td>
<td>-</td>
<td>15.78%</td>
<td>15.80%</td>
<td>15.96%</td>
</tr>
</tbody>
</table>

In our next experiment we analyzed the warp factors estimated during training and found that both LILT- and BLI-VTLN have, on
average, a warp factor that is about 0.01 larger than warps found by FFT-VTLN. Interestingly, the warp histograms in Fig. 5 shows that all three approaches lead to similar warp distributions while the warp distribution for LILT-VTLN is more similar to the one generated by FFT-VTLN than BLI-VTLN. Different values of warp factors also affect the shape of Jacobian determinant, Fig. 6.

In our final experiment, we combined the different acoustic models with the different VTLN implementations during decoding, and estimated the optimal warp factor for each speaker and combination. Table 3 shows that both methods that perform a linear transform of the truncated MFCC perform as well as the FFT-VTLN without statistically significant differences. The statistical significance test also shows that there are no significant differences between FFT-VTLN, LILT-VTLN, and BLI-VTLN, even if the models and front ends do not match.

![Fig. 5. Warp histograms for FFT-, LILT-, and BLI-VTLN.](image)

![Fig. 6. Jacobian (log determinant) for LILT-VTLN and BLI-VTLN.](image)

<table>
<thead>
<tr>
<th>Acoustic Model</th>
<th>no VTLN</th>
<th>FFT</th>
<th>BLI</th>
<th>LILT</th>
</tr>
</thead>
<tbody>
<tr>
<td>no VTLN</td>
<td>16.84%</td>
<td>16.34%</td>
<td>16.41%</td>
<td>16.38%</td>
</tr>
<tr>
<td>FFT-VTLN</td>
<td>-</td>
<td>15.78%</td>
<td>15.76%</td>
<td>15.78%</td>
</tr>
<tr>
<td>BLI-VTLN</td>
<td>-</td>
<td>15.87%</td>
<td>15.96%</td>
<td>15.90%</td>
</tr>
<tr>
<td>LILT-VTLN</td>
<td>-</td>
<td>15.95%</td>
<td>15.73%</td>
<td>15.81%</td>
</tr>
</tbody>
</table>

Table 3. Decoding with matching warp factors.

Overall, the LILT-VTLN system was as compatible with the FFT-VTLN warp factors and acoustic model as the BLI-VTLN system was. This leads to the conclusion that it is not critical which interpolation is performed as long as it gives a reasonable approximation of the Mel-spectrum.

5. CONCLUSION

We proposed a new approach for implementing vocal tract length normalization in the truncated cepstral domain. Local Interpolation Linear Transform VTLN (LILT-VTLN) is an elegant and easy to implement technique which has the advantage of being less dependent on the front-end structure, in particular the design of the Mel filter bank. It does not assume or require an equidistance property of the Mel filters in the Mel domain or the introduction of half-filters (in contrast to other methods such as band-limited interpolation VTLN). This is relevant when, for example, the Mel filter bank is designed with a gap at the lower frequency as is often used in telephony speech recognition. We compared our approach with conventional VTLN and the band-limited interpolation approach: the experimental results show that in both matched and non matched condition all the approaches work similarly with no statistical significance differences. This demonstrates the possibility of generating compatible warped features which allows an easy usage of existing acoustic models in DSR frameworks.

6. REFERENCES

